Pseudoelasticity
   HOME

TheInfoList



OR:

In
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
, pseudoelasticity, sometimes called superelasticity, is an
elastic Elastic is a word often used to describe or identify certain types of elastomer, Elastic (notion), elastic used in garments or stretch fabric, stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rub ...
(reversible) response to an applied stress, caused by a
phase transformation In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic s ...
between the austenitic and martensitic phases of a
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
. It is exhibited in
shape-memory alloy In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, ...
s.


Overview

Pseudoelasticity is from the reversible motion of domain boundaries during the phase transformation, rather than just bond stretching or the introduction of defects in the crystal lattice (thus it is not true super elasticity but rather
pseudo Pseudo- (from , ) is a prefix used in a number of languages, often to mark something as a fake or insincere version. In English, the prefix is used on both nouns and adjectives. It can be considered a privative prefix specifically denoting '' ...
elasticity). Even if the domain boundaries do become pinned, they may be reversed through heating. Thus, a pseudoelastic material may return to its previous shape (hence, ''shape memory'') after the removal of even relatively high applied strains. One special case of pseudoelasticity is called the Bain Correspondence. This involves the austenite/martensite phase transformation between a face-centered crystal lattice (FCC) and a body-centered tetragonal crystal structure (BCT). Superelastic
alloys An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have properties ...
belong to the larger family of
shape-memory alloy In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, ...
s. When mechanically loaded, a superelastic alloy deforms reversibly to very high strains (up to 10%) by the creation of a stress-induced phase. When the load is removed, the new phase becomes unstable and the material regains its original shape. Unlike shape-memory alloys, no change in temperature is needed for the alloy to recover its initial shape. Superelastic devices take advantage of their large, reversible deformation and include antennas,
eyeglass Glasses, also known as eyeglasses (American English), spectacles ( Commonwealth English), or colloquially as specs, are vision eyewear with clear or tinted lenses mounted in a frame that holds them in front of a person's eyes, typically ...
frames, and biomedical
stent In medicine, a stent is a tube usually constructed of a metallic alloy or a polymer. It is inserted into the Lumen (anatomy), lumen (hollow space) of an anatomic vessel or duct to keep the passageway open. Stenting refers to the placement of ...
s.
Nickel titanium Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and ...
(Nitinol) is an example of an alloy exhibiting superelasticity.


Size effects

Recently, there have been interests of discovering materials exhibiting superelasticity in nanoscale for
MEMS MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
(Microelectromechanical systems) application. The ability to control the martensitic phase transformation has already been reported. But the behavior of superelasticity has been observed to have size effects in nanoscale. Qualitatively speaking, superelasticity is the reversible deformation by phase transformation. Therefore, it competes with the irreversible plastic deformation by dislocation motion. At nanoscale, the dislocation density and possible Frank–Read source sites are greatly reduced, so the
yield stress In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elasticity (physics), elastic behavior and the beginning of plasticity (physics), plastic behavior. Below the yield point ...
is increased with reduced size. Therefore, for materials exhibiting superelasticity behavior in nanoscale, it has been found that they can operate in long-term cycling with little detrimental evolution. On the other hand, the critical stress for martensitic phase transformation to occur is also increased because of the reduced possible sites for
nucleation In thermodynamics, nucleation is the first step in the formation of either a new Phase (matter), thermodynamic phase or Crystal structure, structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically def ...
to begin. Nucleation usually begins near dislocation or at surface defects. But for nanoscale materials, the dislocation density is greatly reduced, and the surface is usually atomically smooth. Therefore, the phase transformation of nanoscale materials exhibiting superelasticity is usually found to be homogeneous, resulting in much higher critical stress. Specifically, for Zirconia, where it has three phases, the competition between phase transformation and plastic deformation has been found to be orientation dependent, indicating the orientation dependence of
activation energy In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (k ...
of dislocation and nucleation. Therefore, for nanoscale materials suitable for superelasticity, one should research on the optimized crystal orientation and surface roughness for most enhanced superelasticity effect.


See also

*
Shape-memory alloy In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, ...
*
Elasticity (physics) In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are a ...


References

* * * * * *{{cite journal , last=Yamada , first=Y. , title=Theory of pseudoelasticity and the shape-memory effect , journal=Physical Review B , publisher=American Physical Society (APS) , volume=46 , issue=10 , date=1992-09-01 , issn=0163-1829 , doi=10.1103/physrevb.46.5906 , pages=5906–5911, pmid=10002272 , bibcode=1992PhRvB..46.5906Y


External links


DoITPoMS Teaching and Learning Package: "Superelasticity and Shape Memory Alloys"
Materials science