HOME

TheInfoList



OR:

In mathematics, pseudoanalytic functions are functions introduced by that generalize
analytic functions In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
and satisfy a weakened form of the
Cauchy–Riemann equations In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differen ...
.


Definitions

Let z=x+iy and let \sigma(x,y)=\sigma(z) be a real-valued function defined in a bounded domain D. If \sigma>0 and \sigma_x and \sigma_y are
Hölder continuous Hölder: * ''Hölder, Hoelder'' as surname * Hölder condition * Hölder's inequality * Hölder mean * Jordan–Hölder theorem In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a mod ...
, then \sigma is admissible in D. Further, given a
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ve ...
F, if \sigma is admissible for some neighborhood at each point of F, \sigma is admissible on F. The complex-valued function f(z)=u(x,y)+iv(x,y) is pseudoanalytic with respect to an admissible \sigma at the point z_0 if all partial derivatives of u and v exist and satisfy the following conditions: :u_x=\sigma(x,y)v_y, \quad u_y=-\sigma(x,y)v_x If f is pseudoanalytic at every point in some domain, then it is pseudoanalytic in that domain.


Similarities to analytic functions

* If f(z) is not the constant 0, then the zeroes of f are all isolated. * Therefore, any
analytic continuation In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a n ...
of f is unique.


Examples

* Complex constants are pseudoanalytic. * Any linear combination with real coefficients of pseudoanalytic functions is pseudoanalytic.


See also

*
Quasiconformal mapping In mathematical complex analysis, a quasiconformal mapping, introduced by and named by , is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity. Intuitively, let ''f'' : '' ...
*
Elliptic partial differential equations Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form :Au_ + 2Bu_ + Cu_ + Du_x + Eu_y + Fu +G= 0,\, where ...
* Cauchy-Riemann equations


References


Further reading

* * * {{Citation, last1=Bers, first1=Lipman, title=Theory of pseudo-analytic functions, url=https://books.google.com/books?id=79dWAAAAMAAJ, year=1953, publisher=Institute for Mathematics and Mechanics, New York University, New York, mr=0057347 Complex analysis Partial differential equations Types of functions