HOME

TheInfoList



OR:

A pseudo-
uniform polyhedron In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also ...
is a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
which has
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s as faces and has the same
vertex configuration In geometry, a vertex configurationCrystallography ...
at all vertices but is not
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of fa ...
: it is not true that for any two vertices, there exists a symmetry of the polyhedron mapping the first isometrically onto the second. Thus, although all the vertices of a pseudo-uniform polyhedron appear the same, it is not isogonal. They are called pseudo-uniform polyhedra due to their resemblance to some true
uniform polyhedra In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also f ...
. There are two pseudo-uniform polyhedra: the
pseudorhombicuboctahedron In geometry, the elongated square gyrobicupola or pseudo-rhombicuboctahedron is one of the Johnson solids (). It is not usually considered to be an Archimedean solid, even though its faces consist of regular polygons that meet in the same patt ...
and the
pseudo-great rhombicuboctahedron In geometry, the pseudo great rhombicuboctahedron is one of the two pseudo uniform polyhedra, the other being the convex elongated square gyrobicupola or pseudo rhombicuboctahedron. It has the same vertex figure as the nonconvex great rhombicuboc ...
. They both have D4d symmetry, the same symmetry as a
square antiprism In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an ''anticube''. If all its faces are regular, it is a se ...
. They can both be constructed from a
uniform polyhedron In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also ...
by twisting one
cupola In architecture, a cupola () is a relatively small, most often dome-like, tall structure on top of a building. Often used to provide a lookout or to admit light and air, it usually crowns a larger roof or dome. The word derives, via Italian, fr ...
-shaped cap.


The pseudo-uniform polyhedra


Pseudorhombicuboctahedron

The pseudorhombicuboctahedron is the only convex pseudo-uniform polyhedron. It is also a
Johnson solid In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johns ...
(J37) and can also be called the
elongated square gyrobicupola In geometry, the elongated square gyrobicupola or pseudo-rhombicuboctahedron is one of the Johnson solids (). It is not usually considered to be an Archimedean solid, even though its faces consist of regular polygons that meet in the same pat ...
. Its dual is the
pseudo-deltoidal icositetrahedron The pseudo-deltoidal icositetrahedron is a convex polyhedron with congruent kites as its faces. It is the dual of the elongated square gyrobicupola, also known as the pseudorhombicuboctahedron. As the pseudorhombicuboctahedron is tightly rela ...
. As the name suggests, it can be constructed by elongating a
square gyrobicupola In geometry, the square gyrobicupola is one of the Johnson solids (). Like the square orthobicupola (), it can be obtained by joining two square cupolae () along their bases. The difference is that in this solid, the two halves are rotated 45 de ...
(''J''29) and inserting an
octagon In geometry, an octagon (from the Greek ὀκτάγωνον ''oktágōnon'', "eight angles") is an eight-sided polygon or 8-gon. A ''regular octagon'' has Schläfli symbol and can also be constructed as a quasiregular truncated square, t, wh ...
al
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
between its two halves. The resulting solid is locally vertex-regular — the arrangement of the four faces incident on any vertex is the same for all vertices; this is unique among the Johnson solids. However, it is not
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of fa ...
, and consequently not one of the
Archimedean solid In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed ...
s, as there are pairs of vertices such that there is no isometry of the solid which maps one into the other. Essentially, the two types of vertices can be distinguished by their "neighbors of neighbors." Another way to see that the polyhedron is not vertex-regular is to note that there is exactly one belt of eight squares around its equator, which distinguishes vertices on the belt from vertices on either side. The solid can also be seen as the result of twisting one of the
square cupola In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in t ...
e (''J''4) on a
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ...
(one of the
Archimedean solid In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed ...
s; a.k.a. the elongated square orthobicupola) by 45 degrees. Its similarity to the rhombicuboctahedron gives it the alternative name pseudorhombicuboctahedron. It has occasionally been referred to as "the fourteenth Archimedean solid". With faces colored by its ''D''4d symmetry, it can look like this: There are 8 (green) squares around its
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can al ...
, 4 (red) triangles and 4 (yellow) squares above and below, and one (blue) square on each pole. The construction of the uniform and pseudo rhombicuboctahedra can be seen in the following augmentations of the octagonal prism:


Pseudo-great rhombicuboctahedron

The uniform
nonconvex great rhombicuboctahedron In geometry, the nonconvex great rhombicuboctahedron is a nonconvex uniform polyhedron, indexed as U17. It has 26 faces (8 triangles and 18 squares), 48 edges, and 24 vertices. It is represented by the Schläfli symbol rr and Coxeter-Dynkin di ...
may be seen as an
octagrammic prism In geometry, the octagrammic prism is one of an infinite set of nonconvex prisms formed by square sides and two regular star polygon In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in dept ...
with the octagrams excavated with crossed square cupolae, similarly to how the
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ...
may be seen as an
octagonal prism In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron. Symmetry Images The octagonal prism can also ...
with the octagons augmented with square cupolae. Rotating one of the cupolae in this construction results in the
pseudo-great rhombicuboctahedron In geometry, the pseudo great rhombicuboctahedron is one of the two pseudo uniform polyhedra, the other being the convex elongated square gyrobicupola or pseudo rhombicuboctahedron. It has the same vertex figure as the nonconvex great rhombicuboc ...
. The pictures below show the excavation of the octagrammic prism with crossed square cupolae taking place one step at a time. The crossed square cupolae are always red, while the square sides of the octagrammic prism are in the other colours. All images are oriented approximately the same way for clarity. The pseudo great rhombicuboctahedron has a single "belt" of squares around its equator, and can be constructed by twisting one of the crossed square cupolae on a nonconvex great rhombicuboctahedron by 45 degrees. This is analogous to the pseudorhombicuboctahedron.


Duals of the pseudo-uniform polyhedra

The
duals ''Duals'' is a compilation album by the Irish rock band U2. It was released in April 2011 to u2.com subscribers. Track listing :* "Where the Streets Have No Name" and "Amazing Grace" are studio mix of U2's performance at the Rose Bowl, ...
of the pseudo-uniform polyhedra have all faces
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
, but not transitive: their faces do not all lie within the same
symmetry orbit In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphi ...
and they are thus not
isohedral In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
. This is a consequence of the pseudo-uniform polyhedra having the same
vertex configuration In geometry, a vertex configurationCrystallography ...
at every vertex, but not being
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of fa ...
. This is demonstrated by the different colours used for the faces in the images of the dual pseudo-uniform polyhedra in this article, denoting different types of faces.


Pseudo-deltoidal icositetrahedron


Pseudo-great deltoidal icositetrahedron


References

{{reflist *