Mathematical definition
A propagation graph is a simple directed graph with vertex set and edge set . The vertices models objects in the propagation scenario. The vertex set is split into three disjoint sets as where is the set of transmitters, is the set of receivers and is the set of objects named "scatterers". The edge set models the propagation models propagation conditions between vertices. Since is assumed simple, and an edge may be identified by a pair of vertices as An edge is included in if a signal emitted by vertex can propagate to . In a propagation graph, transmitters cannot have incoming edges and receivers cannot have outgoing edges. Two propagation rules are assumed * A vertex sums the signals impinging via its ingoing edges and remits a scaled version it via the outgoing edges. * Each edge transfers the signal from to scaled by a transfer function. The definition of the vertex gain scaling and the edge transfer functions can be adapted to accommodate particular scenarios and should be defined in order to use the model in simulations. A variety of such definitions have been considered for different propagation graph models in the published literature.Transfer function
The transfer function of a propagation graph forms an infinite series The transfer function is aPartial transfer function
Closed form expressions are available for partial sums, i.e. by considering only some of the terms in the transfer function. The partial transfer function for signal components propagation via at least and at most interactions is defined as where Here denotes the number of interactions or the ''bouncing order''.Propagation graph models
The propagation graph methodology have been applied in various settings to create radio channel models. Such a model is referred to as a ''propagation graph model''. Such models have been derived for scenarios including * Unipolarized inroom channels. The initial propagation graph models were derived for unipolarized inroom channels. * In a polarimetric propagation graph model is developed for the inroom propagation scenario. * The propagation graph framework has been extended in to time-variant scenarios (such as the vehicle-to-vehicle). For terrestrial communications, where relative velocity of objects are limited, the channel may be assumed quasi-static and the static model may be applied at each time step. * In a number of works including propagation graphs have been integrated into ray-tracing models to enable simulation of reverberation phenomena. Such models are referred to as ''hybrid'' models. * Complex environments including outdoor-to-indoor cases. can be studied by taking advantage of the special structure of propagation graphs for these scenarios. Computation methods for obtaining responses for very complex environments have been developed in * The graph model methodology has been used to make spatially consistent MIMO channel models. * Several propagation graph models have been published for high-speed train communications.Calibration of propagation graph models
To calibrate a propagation graph model, its parameters should be set to reasonable values. Different approaches can be taken. Certain parameters can be derived from simplified geometry of the room. In particular, reverberation time can be computed via room electromagnetics. Alternatively, the parameters can ben set according to measurement data using inference techniques such asRelated radio channel model types
The method of propagation graph modeling is related to other methods. Noticeably, * Multiple scattering theory * Radiosity * Ray tracing * Geometry-based stochastic channel models (GBSCM)References
{{Reflist, refs= {{cite journal , last1=Pedersen , first1=Troels , last2=Fleury , first2=Bernard , title=A Realistic Radio Channel Model Based in Stochastic Propagation Graphs , journal=Proceedings 5th MATHMOD Vienna , date=2006 , pages=324–331 , url=https://vbn.aau.dk/ws/files/2782291/PedersenTroels148.pdf {{cite book , last1=Pedersen , first1=T. , last2=Fleury , first2=B. H. , title=2007 IEEE International Conference on Communications , chapter=Radio Channel Modelling Using Stochastic Propagation Graphs , date=2007 , pages=2733–2738 , doi=10.1109/ICC.2007.454, isbn=978-1-4244-0353-0 , s2cid=8479930 , chapter-url=https://vbn.aau.dk/da/publications/0a1c1b30-15aa-11dc-a5a4-000ea68e967b {{cite journal , last1=Pedersen , first1=Troels , last2=Steinbock , first2=Gerhard , last3=Fleury , first3=Bernard H. , title=Modeling of Reverberant Radio Channels Using Propagation Graphs , journal=IEEE Transactions on Antennas and Propagation , date=2012 , volume=60 , issue=12 , pages=5978–5988 , doi=10.1109/TAP.2012.2214192, arxiv=1105.4542 , bibcode=2012ITAP...60.5978P , s2cid=14429206 {{cite book , last1=Stern , first1=K. , last2=Fuglsig , first2=A.J. , last3=Ramsgaard-Jensen , first3=K. , last4=Pedersen , first4=T. , title=12th European Conference on Antennas and Propagation (EuCAP 2018) , chapter=Propagation graph modeling of time-varying radio channels , date=2018 , pages= 22 (5 pp.), doi=10.1049/cp.2018.0381, isbn=978-1-78561-816-1 , s2cid=115436690 , chapter-url=https://vbn.aau.dk/ws/files/274301167/Propagation_Graph_Modeling_of_Time_Varying_Radio_Channels.pdf {{cite journal , last1=Steinbock , first1=Gerhard , last2=Gan , first2=Mingming , last3=Meissner , first3=Paul , last4=Leitinger , first4=Erik , last5=Witrisal , first5=Klaus , last6=Zemen , first6=Thomas , last7=Pedersen , first7=Troels , title=Hybrid Model for Reverberant Indoor Radio Channels Using Rays and Graphs , journal=IEEE Transactions on Antennas and Propagation , date=2016 , volume=64 , issue=9 , pages=4036–4048 , doi=10.1109/TAP.2016.2589958 , bibcode=2016ITAP...64.4036S , s2cid=34442470 {{cite journal , last1=Gan , first1=Mingming , last2=Steinbock , first2=Gerhard , last3=Xu , first3=Zhinan , last4=Pedersen , first4=Troels , last5=Zemen , first5=Thomas , title=A Hybrid Ray and Graph Model for Simulating Vehicle-to-Vehicle Channels in Tunnels , journal=IEEE Transactions on Vehicular Technology , date=2018 , volume=67 , issue=9 , pages=7955–7968 , doi=10.1109/TVT.2018.2839980, s2cid=52305255 , url=https://vbn.aau.dk/da/publications/c6ef8551-533a-4331-8fe4-880785176abf {{cite journal , last1=Miao , first1=Yang , last2=Pedersen , first2=Troels , last3=Gan , first3=Mingming , last4=Vinogradov , first4=Evgenii , last5=Oestges , first5=Claude , title=Reverberant Room-to-Room Radio Channel Prediction by Using Rays and Graphs , journal=IEEE Transactions on Antennas and Propagation , date=2018 , volume=67 , issue=1 , pages=484–494 , doi=10.1109/TAP.2018.2878088 , hdl=2078.1/208678 , s2cid=58669645 , url=https://vbn.aau.dk/ws/files/288682366/FINAL_VERSION_2.pdf {{cite book , last1=Pedersen , first1=Troels , last2=Steinbock , first2=Gerhard , last3=Fleury , first3=Bernard H. , title=2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS) , chapter=Modeling of outdoor-to-indoor radio channels via propagation graphs , date=2014 , pages=1–4 , doi=10.1109/URSIGASS.2014.6929300, isbn=978-1-4673-5225-3 , s2cid=25407801 , chapter-url=https://vbn.aau.dk/da/publications/0d4675ae-f70a-4c2b-8749-1f7528307166 {{cite journal , last1=Adeogun , first1=R. , last2=Pedersen , first2=T. , last3=Gustafson , first3=C. , last4=Tufvesson , first4=F. , title=Polarimetric Wireless Indoor Channel Modeling Based on Propagation Graph , journal=IEEE Transactions on Antennas and Propagation , date=2019 , volume=67 , issue=10 , pages=6585–6595 , doi=10.1109/TAP.2019.2925128, bibcode=2019ITAP...67.6585A , s2cid=96454776 , url=https://vbn.aau.dk/ws/files/308358082/Polarimetric_Wireless_Indoor_Channel_Modelling_Based_on_Propagation_Graph.pdf {{cite journal , last1=Adeogun , first1=Ramoni , last2=Bharti , first2=Ayush , last3=Pedersen , first3=Troels , title=An Iterative Transfer Matrix Computation Method for Propagation Graphs in Multiroom Environments , journal=IEEE Antennas and Wireless Propagation Letters , date=2019, volume=18 , issue=4 , pages=616–620 , doi=10.1109/LAWP.2019.2898641, bibcode=2019IAWPL..18..616A , s2cid=106411757 , url=https://vbn.aau.dk/da/publications/fd012fee-261d-4219-b3cb-8ef1baf94475 {{cite journal , last1=Adeogun , first1=Ramoni , title=Calibration of Stochastic Radio Propagation Models Using Machine Learning , journal=IEEE Antennas and Wireless Propagation Letters , date=2019 , volume=18 , issue=12 , pages=2538–2542 , doi=10.1109/LAWP.2019.2942819, bibcode=2019IAWPL..18.2538A , s2cid=203994446 , url=https://vbn.aau.dk/ws/files/310979842/MachineLearningCalibrationPG.pdf {{cite journal , last1=Bharti , first1=A. , last2=Adeogun , first2=R. , last3=Pedersen , first3=T. , title=Learning Parameters of Stochastic Radio Channel Models From Summaries , journal=IEEE Open Journal of Antennas and Propagation , date=2020 , volume=1 , pages=175–188 , doi=10.1109/OJAP.2020.2989814 , s2cid=215861548 , doi-access=free {{cite journal , last1=Zhou , first1=Tao , last2=Tao , first2=Cheng , last3=Salous , first3=Sana , last4=Tan , first4=Zhenhui , last5=Liu , first5=Liu , last6=Tian , first6=Li , title=Graph-based stochastic model for high-speed railway cutting scenarios , journal=IET Microwaves, Antennas & Propagation , date=2014 , volume=9 , issue=15 , pages=1691–1697 , doi=10.1049/iet-map.2014.0827, doi-access=free {{cite conference , last1=Cheng , first1=Wenpu , last2=Tao , first2=Cheng , last3=Liu , first3=Liu , last4=Sun , first4=Rongchen , last5=Zhou , first5=Tao , title=Geometrical channel characterization for high speed railway environments using propagation graphs methods , conference=16th International Conference on Advanced Communication Technology , date=2014 , pages=239–243 , doi=10.1109/ICACT.2014.6778956, isbn=978-89-968650-3-2 , s2cid=9210011 {{cite journal , last1=Pratschner , first1=S. , last2=Blazek , first2=T. , last3=Zöchmann , first3=E. , last4=Ademaj , first4=F. , last5=Caban , first5=S. , last6=Schwarz , first6=S. , last7=Rupp , first7=M. , title=A Spatially Consistent MIMO Channel Model With Adjustable K Factor , journal=IEEE Access , date=2019 , volume=7 , pages=110174–110186 , doi=10.1109/ACCESS.2019.2934635, bibcode=2019IEEEA...7k0174P , s2cid=201620704 , doi-access=free {{cite book , last1=Lu , first1=S. X. , title=2011 IEEE International Symposium on Antennas and Propagation (APSURSI) , chapter=Characterization of the random scattering induced delay power spectrum using Born series , date=2011 , pages=3317–3319 , doi=10.1109/APS.2011.6058692, isbn=978-1-4244-9563-4 , s2cid=8166055 {{cite journal , last1=Tian , first1=L. , last2=Degli-Esposti , first2=V. , last3=Vitucci , first3=E. M. , last4=Yin , first4=X. , title=Semi-Deterministic Radio Channel Modeling Based on Graph Theory and Ray-Tracing , journal=IEEE Transactions on Antennas and Propagation , date=2016 , volume=64 , issue=6 , pages=2475–2486 , doi=10.1109/TAP.2016.2546950, bibcode=2016ITAP...64.2475T , s2cid=29844181 , hdl=11585/536072 , hdl-access=free Mathematical modeling