HOME

TheInfoList



OR:

''Proofs from THE BOOK'' is a book of
mathematical proof A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use othe ...
s by
Martin Aigner Martin Aigner (28 February 1942 – 11 October 2023) was an Austrian mathematician and professor at Freie Universität Berlin from 1974 with interests in combinatorial mathematics and graph theory. Biography Martin Aigner was born on 28 Februar ...
and Günter M. Ziegler. The book is dedicated to the
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
Paul Erdős Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, g ...
, who often referred to "The Book" in which
God In monotheistic belief systems, God is usually viewed as the supreme being, creator, and principal object of faith. In polytheistic belief systems, a god is "a spirit or being believed to have created, or for controlling some part of the un ...
keeps the most elegant proof of each mathematical
theorem In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
. During a lecture in 1985, Erdős said, "You don't have to believe in God, but you should believe in The Book."


Content

''Proofs from THE BOOK'' contains 32 sections (45 in the sixth edition), each devoted to one theorem but often containing multiple proofs and related results. It spans a broad range of mathematical fields:
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
,
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
,
analysis Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
,
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
and
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
. Erdős himself made many suggestions for the book, but died before its publication. The book is illustrated by . It has gone through six editions in English, and has been translated into Persian, French, German, Hungarian, Italian, Japanese, Chinese, Polish, Portuguese, Korean, Turkish, Russian, Spanish and Greek. The American Mathematical Society awarded the 2018 Leroy P. Steele Prize for Mathematical Exposition to Aigner and Ziegler for this book. The proofs include: * Six proofs of the infinitude of the primes, including
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
's and Furstenberg's * Proof of Bertrand's postulate *
Fermat's theorem on sums of two squares In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as: :p = x^2 + y^2, with ''x'' and ''y'' integers, if and only if :p \equiv ...
* Two proofs of the
Law of quadratic reciprocity In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard st ...
* Proof of
Wedderburn's little theorem In mathematics, Wedderburn's little theorem states that every finite division ring is a field; thus, every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields. The Art ...
asserting that every finite division ring is a field * Hadamard's maximal determinant problem and Hadamard's inequality * Four proofs of the
Basel problem The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 ...
* Proof that e is irrational (also showing the irrationality of certain related numbers) *
Hilbert's third problem The third of Hilbert's problems, Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedron, polyhedra of equal volume, is it always possible t ...
*
Sylvester–Gallai theorem The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, ...
and De Bruijn–Erdős theorem * Cauchy's theorem *
Borsuk's conjecture The Borsuk problem in geometry, for historical reasons incorrectly called Borsuk's conjecture, is a question in discrete geometry. It is named after Karol Borsuk. Problem In 1932, Karol Borsuk showed that an ordinary 3-dimensional ball in Eu ...
*
Schröder–Bernstein theorem In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions and between the sets and , then there exists a bijective function . In terms of the cardinality of the two sets, this classically implies that if ...
*
Wetzel's problem In mathematics, Wetzel's problem concerns bounds on the cardinality of a set of analytic functions that, for each of their arguments, take on few distinct values. It is named after John Wetzel, a mathematician at the University of Illinois at Urbana ...
on families of analytic functions with few distinct values * The fundamental theorem of algebra * Monsky's theorem (4th edition) * Van der Waerden's conjecture (6th edition) * Littlewood–Offord lemma *
Buffon's needle problem In probability theory, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: :Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto th ...
*
Pigeonhole principle In mathematics, the pigeonhole principle states that if items are put into containers, with , then at least one container must contain more than one item. For example, of three gloves, at least two must be right-handed or at least two must be l ...
and double counting,
Sperner's lemma In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an ...
* Sperner's theorem, Erdős–Ko–Rado theorem and Hall's theorem * Lindström–Gessel–Viennot lemma and the
Cauchy–Binet formula In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so th ...
* Four proofs of
Cayley's formula In mathematics, Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer n, the number of trees on n labeled vertices is n^. The formula equivalently counts the spanning trees of a ...
* Kakeya sets in vector spaces over finite fields * Bregman–Minc inequality * Dinitz problem * Steve Fisk's proof of the art gallery theorem * Five proofs of
Turán's theorem In graph theory, Turán's theorem bounds the number of edges that can be included in an undirected graph that does not have a clique (graph theory), complete subgraph of a given size. It is one of the central results of extremal graph theory, an a ...
* Shannon capacity and Lovász number *
Chromatic number In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring i ...
of Kneser graphs * Friendship theorem * Some proofs using the
probabilistic method In mathematics, the probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly c ...


References

* **
Günter M. Ziegler's homepage
including a list of editions and translations. * Mathematical proofs Mathematics books Paul Erdős 1998 non-fiction books {{mathematics-lit-stub