HOME

TheInfoList



OR:

The standard probability axioms are the foundations of
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
introduced by Russian mathematician
Andrey Kolmogorov Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet ...
in 1933. These
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. There are several other (equivalent) approaches to formalising probability. Bayesians will often motivate the Kolmogorov axioms by invoking Cox's theorem or the Dutch book arguments instead.


Kolmogorov axioms

The assumptions as to setting up the axioms can be summarised as follows: Let (\Omega, F, P) be a
measure space A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that ...
such that P(E) is the
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
of some event E, and P(\Omega) = 1. Then (\Omega, F, P) is a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models ...
, with sample space \Omega, event space F and
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
P.


First axiom

The probability of an event is a non-negative real number: :P(E)\in\mathbb, P(E)\geq 0 \qquad \forall E \in F where F is the event space. It follows (when combined with the second axiom) that P(E) is always finite, in contrast with more general
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingl ...
. Theories which assign negative probability relax the first axiom.


Second axiom

This is the assumption of unit measure: that the probability that at least one of the elementary events in the entire sample space will occur is 1. : P(\Omega) = 1


Third axiom

This is the assumption of σ-additivity: : Any
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
sequence of disjoint sets (synonymous with ''
mutually exclusive In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails ...
'' events) E_1, E_2, \ldots satisfies ::P\left(\bigcup_^\infty E_i\right) = \sum_^\infty P(E_i). Some authors consider merely finitely additive probability spaces, in which case one just needs an
algebra of sets In mathematics, the algebra of sets, not to be confused with the mathematical structure of ''an'' algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the re ...
, rather than a σ-algebra. Quasiprobability distributions in general relax the third axiom.


Consequences

From the Kolmogorov axioms, one can deduce other useful rules for studying probabilities. The proofs of these rules are a very insightful procedure that illustrates the power of the third axiom, and its interaction with the prior two axioms. Four of the immediate corollaries and their proofs are shown below:


Monotonicity

:\quad\text\quad A\subseteq B\quad\text\quad P(A)\leq P(B). If A is a subset of, or equal to B, then the probability of A is less than, or equal to the probability of B.


''Proof of monotonicity''

Source: In order to verify the monotonicity property, we set E_1=A and E_2=B\setminus A, where A\subseteq B and E_i=\varnothing for i\geq 3. From the properties of the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
(\varnothing), it is easy to see that the sets E_i are pairwise disjoint and E_1\cup E_2\cup\cdots=B. Hence, we obtain from the third axiom that :P(A)+P(B\setminus A)+\sum_^\infty P(E_i)=P(B). Since, by the first axiom, the left-hand side of this equation is a series of non-negative numbers, and since it converges to P(B) which is finite, we obtain both P(A)\leq P(B) and P(\varnothing)=0.


The probability of the empty set

: P(\varnothing)=0. In many cases, \varnothing is not the only event with probability 0.


''Proof of the probability of the empty set''

P(\varnothing \cup \varnothing) = P(\varnothing) since \varnothing \cup \varnothing = \varnothing, P(\varnothing)+P(\varnothing) = P(\varnothing) by applying the third axiom to the left-hand side (note \varnothing is disjoint with itself), and so P(\varnothing) = 0 by subtracting P(\varnothing) from each side of the equation.


The complement rule

P\left(A^\right) = P(\Omega-A) = 1 - P(A)


''Proof of the complement rule''

Given A and A^ are mutually exclusive and that A \cup A^\complement = \Omega : P(A \cup A^\complement)=P(A)+P(A^\complement) ''... (by axiom 3)'' and, P(A \cup A^\complement)=P(\Omega)=1 ... ''(by axiom 2)'' \Rightarrow P(A)+P(A^\complement)=1 \therefore P(A^\complement)=1-P(A)


The numeric bound

It immediately follows from the monotonicity property that : 0\leq P(E)\leq 1\qquad \forall E\in F.


''Proof of the numeric bound''

Given the complement rule P(E^c)=1-P(E) and ''axiom 1'' P(E^c)\geq0 : 1-P(E) \geq 0 \Rightarrow 1 \geq P(E) \therefore 0\leq P(E)\leq 1


Further consequences

Another important property is: : P(A \cup B) = P(A) + P(B) - P(A \cap B). This is called the addition law of probability, or the sum rule. That is, the probability that an event in ''A'' ''or'' ''B'' will happen is the sum of the probability of an event in ''A'' and the probability of an event in ''B'', minus the probability of an event that is in both ''A'' ''and'' ''B''. The proof of this is as follows: Firstly, :P(A\cup B) = P(A) + P(B\setminus A). ''(by Axiom 3)'' So, :P(A \cup B) = P(A) + P(B\setminus (A \cap B)) (by B \setminus A = B\setminus (A \cap B)). Also, :P(B) = P(B\setminus (A \cap B)) + P(A \cap B) and eliminating P(B\setminus (A \cap B)) from both equations gives us the desired result. An extension of the addition law to any number of sets is the inclusion–exclusion principle. Setting ''B'' to the complement ''Ac'' of ''A'' in the addition law gives : P\left(A^\right) = P(\Omega\setminus A) = 1 - P(A) That is, the probability that any event will ''not'' happen (or the event's complement) is 1 minus the probability that it will.


Simple example: coin toss

Consider a single coin-toss, and assume that the coin will either land heads (H) or tails (T) (but not both). No assumption is made as to whether the coin is fair or as to whether or not any bias depends on how the coin is tossed. We may define: : \Omega = \ : F = \ Kolmogorov's axioms imply that: : P(\varnothing) = 0 The probability of ''neither'' heads ''nor'' tails, is 0. : P(\^c) = 0 The probability of ''either'' heads ''or'' tails, is 1. : P(\) + P(\) = 1 The sum of the probability of heads and the probability of tails, is 1.


See also

* * * * * * *


References


Further reading

* *
Formal definition
of probability in the Mizar system, and th
list of theorems
formally proved about it. {{DEFAULTSORT:Probability Axioms Probability theory Mathematical axioms