HOME

TheInfoList



OR:

Pressure swing adsorption (PSA) is a technique used to separate some gas species from a mixture of gases (typically air) under pressure according to the species' molecular characteristics and affinity for an
adsorbent Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
material. It operates at near-ambient temperature and significantly differs from the cryogenic distillation commonly used to separate gases. Selective adsorbent materials (e.g.,
zeolite Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
s, (aka
molecular sieve A molecular sieve is a material with pores of uniform size comparable to that of individual molecules, linking the interior of the solid to its exterior. These materials embody the molecular sieve effect, in which molecules larger than the pore ...
s),
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that greatly increase the surface ar ...
, etc.) are used as trapping material, preferentially adsorbing the target gas species at high pressure. The process then swings to low pressure to desorb the adsorbed gas.


Process

The pressure swing adsorption (PSA) process is based on the phenomenon that under high pressure, gases tend to be trapped onto solid surfaces, ''i.e.'' to be "adsorbed". The higher the pressure, the more gas is adsorbed. When the pressure is dropped, the gas is released, or desorbed. PSA can be used to separate gases in a mixture because different gases are adsorbed onto a given solid surface more or less strongly. For example, if a gas mixture such as
air An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
is passed under pressure through a vessel containing an adsorbent bed of zeolite that attracts
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
more strongly than
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, a fraction of nitrogen will stay in the bed, and the gas exiting the vessel will be richer in oxygen than the mixture entering. When the bed reaches the limit of its capacity to adsorb nitrogen, it can be regenerated by decreasing the pressure, thus releasing the adsorbed nitrogen. It is then ready for another cycle of producing oxygen-enriched air. Using two adsorbent vessels allows for near-continuous production of the target gas. It also allows a pressure equalisation, where the gas leaving the vessel being depressurised is used to partially pressurise the second vessel. This results in significant energy savings, and is a common industrial practice.


Adsorbents

Aside from their ability to discriminate between different gases, adsorbents for PSA systems are usually very porous materials chosen because of their large
specific surface area Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, (with units of m2/kg or m2/g). Alternatively, it may be defined as SA per solid or bulk volume (units of m2/m3 or m−1). I ...
s. Typical adsorbents are
zeolite Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
,
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that greatly increase the surface ar ...
,
silica gel Silica gel is an amorphous and porosity, porous form of silicon dioxide (silica), consisting of an irregular three-dimensional framework of alternating silicon and oxygen atoms with nanometer-scale voids and pores. The voids may contain wate ...
,
alumina Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
, or synthetic
resin A resin is a solid or highly viscous liquid that can be converted into a polymer. Resins may be biological or synthetic in origin, but are typically harvested from plants. Resins are mixtures of organic compounds, predominantly terpenes. Commo ...
s. Though the gas adsorbed on these surfaces may consist of a layer only one or at most a few molecules thickness, surface areas of several hundred square meters per gram enable the adsorption of a large portion of the adsorbent's weight in gas. In addition to their affinity for different gases, zeolites and some types of activated carbon may utilize their molecular sieve characteristics to exclude some gas molecules from their structure based on the size and shape of the molecules, thereby restricting the ability of the larger molecules to be adsorbed.


Applications


Distribution process for oxygen produced by PSA plants

Aside from its use to supply medical oxygen, or as a substitute for bulk cryogenic or compressed-cylinder storage, which is the primary oxygen source for any hospital, PSA has numerous other uses. One of the primary applications of PSA is in the removal of
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
(CO2) as the final step in the large-scale commercial synthesis of
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
(H2) for use in
oil refineries An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied pet ...
and in the production of ammonia (NH3). Refineries often use PSA technology in the removal of
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
(H2S) from hydrogen feed and recycle streams of hydrotreating and hydrocracking units. Another application of PSA is the separation of carbon dioxide from
biogas Biogas is a gaseous renewable energy source produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste, Wastewater treatment, wastewater, and food waste. Biogas is produced by anaerobic ...
to increase the
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
(CH4) ratio. Through PSA the biogas can be upgraded to a quality similar to
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
. This includes a process in landfill gas utilization to upgrade landfill gas to utility-grade high purity methane gas to be sold as natural gas. PSA is also used in: *
Hypoxic air fire prevention system Hypoxic air technology for fire prevention, also known as oxygen reduction system (ORS), is an active fire protection technique based on a permanent reduction of the oxygen concentration in the protected rooms. Unlike traditional fire suppression ...
s to produce air with a low oxygen content. * On purpose
propylene Propylene, also known as propene, is an unsaturated organic compound with the chemical formula . It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like o ...
plants via
propane Propane () is a three-carbon chain alkane with the molecular formula . It is a gas at standard temperature and pressure, but becomes liquid when compressed for transportation and storage. A by-product of natural gas processing and petroleum ref ...
dehydrogenation. They consist of a selective medium for the preferred adsorption of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
and
ethane Ethane ( , ) is a naturally occurring Organic compound, organic chemical compound with chemical formula . At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is List of purification methods ...
over hydrogen. * Industrial nitrogen generator units based on the PSA process can produce high-purity nitrogen gas (up to 99.9995%) from compressed air. However, such generators are more suited to supply intermediate ranges of purity and flows. Capacities of such units are given in Nm3/h, normal cubic meters per hour, one Nm3/h being equivalent to 1000 liters per hour under any of several standard conditions of temperature, pressure, and humidity. ** for nitrogen: from 100 Nm3/h at 99.9% purity, to 9000 Nm3/h at 97% purity; ** for oxygen: up to 1500 Nm3/h with a purity between 88% and 93%. In the frame of
carbon capture and storage Carbon capture and storage (CCS) is a process by which carbon dioxide (CO2) from industrial installations is separated before it is released into the atmosphere, then transported to a long-term storage location.IPCC, 2021Annex VII: Glossary at ...
(CCS), research is also currently underway to capture CO2 in large quantities from coal-fired power plants prior to geosequestration, in order to reduce
greenhouse gas Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. T ...
production from these plants. PSA has also been discussed as a future alternative to the non-regenerable sorbent technology used in space suit primary life support systems, in order to save weight and to extend the operating time of the suit. This is the process used in medical oxygen concentrators used by
emphysema Emphysema is any air-filled enlargement in the body's tissues. Most commonly emphysema refers to the permanent enlargement of air spaces (alveoli) in the lungs, and is also known as pulmonary emphysema. Emphysema is a lower respiratory tract di ...
and
COVID-19 Coronavirus disease 2019 (COVID-19) is a contagious disease caused by the coronavirus SARS-CoV-2. In January 2020, the disease spread worldwide, resulting in the COVID-19 pandemic. The symptoms of COVID‑19 can vary but often include fever ...
patients and others requiring oxygen-enriched air for breathing.


Variations of PSA technology


Double Stage PSA

''(DS-PSA, sometimes also referred to as Dual Step PSA)''
With this variant of PSA developed for use in laboratory nitrogen generators, nitrogen gas is produced into two steps: in the first step, the compressed air is forced to pass through a carbon molecular sieve to produce nitrogen at a purity of approximately 98%; in the second step this nitrogen is forced to pass into a second carbon molecular sieve and the nitrogen gas reaches a final purity up to 99.999%. The purge gas from the second step is recycled and partially used as feed gas in the first step. In addition, the purge process is supported by active evacuation for better performance in the next cycle. The goals of both of these changes is to improve efficiency over a conventional PSA process. DS-PSA can also be applied to increase the oxygen concentration. In this case, an aluminum silica based zeolite adsorbs nitrogen in the first stage reaching 95% oxygen in the outlet, and in the second stage a carbon-based molecular sieve adsorbs the residual nitrogen in a reverse cycle, concentrating oxygen up to 99%.


Rapid PSA

Rapid pressure swing adsorption, or RPSA, is frequently used in portable oxygen concentrators. It allows a large reduction in the size of the adsorbent bed when high purity is not essential and when the feed gas (air) can be discarded. It works by quickly cycling the pressure while alternately venting opposite ends of the column at the same rate. This means that non-adsorbed gases progress along the column much faster and are vented at the
distal Standard anatomical terms of location are used to describe unambiguously the anatomy of humans and other animals. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position provi ...
end, while adsorbed gases do not get the chance to progress and are vented at the proximal extremity.


Vacuum swing adsorption

Vacuum swing adsorption (VSA) segregates certain gases from a gaseous mixture at near ambient pressure; the process then swings to a vacuum to regenerate the adsorbent material. VSA differs from other PSA techniques because it operates at near-ambient temperatures and pressures. VSA typically draws the gas through the separation process with a vacuum. For oxygen and nitrogen VSA systems, the vacuum is typically generated by a blower. Hybrid vacuum pressure swing adsorption (VPSA) systems also exist. VPSA systems apply pressurized gas to the separation process and also apply a vacuum to the purge gas. VPSA systems, like one of the portable oxygen concentrators, are among the most efficient systems measured on customary industry indices, such as recovery (product gas out/product gas in) and productivity (product gas out/mass of sieve material). Generally, higher recovery leads to a smaller compressor, blower, or other compressed gas or vacuum source and lower power consumption. Higher productivity leads to smaller sieve beds. The consumer will most likely consider indices which have a more directly measurable difference in the overall system, like the amount of product gas divided by the system weight and size, the system initial and maintenance costs, the system power consumption or other operational costs, and reliability.


See also

* * * * * * Hypoxicator – Device for providing breathing air with reduced oxygen content * * *


References


Further reading

* Hutson, Nick D.; Rege, Salil U.; and Yang, Ralph T. (2001). “Air Separation by Pressure Swing Absorption Using Superior Absorbent,” National Energy Technology Laboratory, Department of Energy, March 2001. * Ruthven, Douglas M. (2004). Principles of Absorption and Absorption Process, Wiley-InterScience, Hoboken, NJ, p. 1 * Yang, Ralph T. (1997). “Gas Separation by Absorption Processes”, Series on Chemical Engineering, Vol. I, World Scientific Publishing Co., Singapore. * * Santos, João C.; Magalhães, Fernão D.; and Mendes, Adélio, “Pressure Swing Absorption and Zeolites for Oxygen Production”, in Processos de Separação, Universidado do Porto, Porto, Portugal {{Underwater diving, divsup Gas separation Gas technologies Industrial gases Separation processes