In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
,
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
and
philosophy of mathematics
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathem ...
, something that is impredicative is a
self-referencing definition
A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions.
The opposite of impredicativity is predicativity, which essentially entails building
stratified (or ramified) theories where quantification over a type at one 'level' results in types at a new, higher, level. A prototypical example is
intuitionistic type theory
Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory (MLTT)) is a type theory and an alternative foundation of mathematics.
Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematicia ...
, which retains ramification (without the explicit levels) so as to discard impredicativity. The 'levels' here correspond to the number of layers of dependency in a term definition.
Russell's paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains ...
is a famous example of an impredicative construction—namely the
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
of all sets that do not contain themselves. The
paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictor ...
is that such a set cannot exist: If it would exist, the question could be asked whether it contains itself or not—if it does then by definition it should not, and if it does not then by definition it should.
The
greatest lower bound of a set , , also has an impredicative definition: if and only if for all elements of , is less than or equal to , and any less than or equal to all elements of is less than or equal to . This definition quantifies over the set (potentially
infinite, depending on the
order
Order, ORDER or Orders may refer to:
* A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica
* Categorization, the process in which ideas and objects are recognized, differentiated, and understood
...
in question) whose members are the lower bounds of , one of which being the glb itself. Hence predicativism would reject this definition.
History
The terms "predicative" and "impredicative" were introduced by
Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
, though the meaning has changed a little since then.
Solomon Feferman
Solomon Feferman (December 13, 1928July 26, 2016) was an American philosopher and mathematician who worked in mathematical logic. In addition to his prolific technical work in proof theory, computability theory, and set theory, he was known for h ...
provides a historical review of predicativity, connecting it to current outstanding research problems.
The
vicious circle principle
The vicious circle principle is a principle that was endorsed by many predicativist mathematicians in the early 20th century to prevent contradictions. The principle states that no object or property may be introduced by a definition that depen ...
was suggested by
Henri Poincaré
Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
(1905–6, 1908) and
Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
in the wake of the paradoxes as a requirement on legitimate set specifications. Sets that do not meet the requirement are called ''impredicative''.
The first modern paradox appeared with
Cesare Burali-Forti
Cesare Burali-Forti (13 August 1861 – 21 January 1931) was an Italian mathematician, after whom the Burali-Forti paradox is named. He was a prolific writer, with 180 publications.
Biography
Burali-Forti was born in Arezzo, and he obtained hi ...
's 1897 ''A question on transfinite numbers'' and would become known as the
Burali-Forti paradox.
Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( ; ; – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
had apparently discovered the same paradox in his (Cantor's)
"naive" set theory and this become known as
Cantor's paradox
In set theory, Cantor's paradox states that there is no set of all cardinalities. This is derived from the theorem that there is no greatest cardinal number. In informal terms, the paradox is that the collection of all possible "infinite sizes" i ...
. Russell's awareness of the problem originated in June 1901 with his reading of
Frege
Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
's treatise of
mathematical logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
, his 1879 ''
Begriffsschrift
''Begriffsschrift'' (German for, roughly, "concept-writing") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.
''Begriffsschrift'' is usually translated as ''concept writing'' or ''concept notati ...
''; the offending sentence in Frege is the following:
In other words, given the function is the variable and is the invariant part. So why not substitute the value for itself? Russell promptly wrote Frege a letter pointing out that:
Frege promptly wrote back to Russell acknowledging the problem:
While the problem had adverse personal consequences for both men (both had works at the printers that had to be emended),
van Heijenoort observes that "The paradox shook the logicians' world, and the rumbles are still felt today. ... Russell's paradox, which uses the bare notions of set and element, falls squarely in the field of logic. The paradox was first published by Russell in ''The principles of mathematics'' (1903) and is discussed there in great detail ...". Russell, after six years of false starts, would eventually answer the matter with his 1908 theory of types by "propounding his ''
axiom of reducibility
The axiom of reducibility was introduced by Bertrand Russell in the early 20th century as part of his ramified theory of types. Russell devised and introduced the axiom in an attempt to manage the contradictions he had discovered in his analysis ...
''. It says that any function is coextensive with what he calls a ''predicative'' function: a function in which the types of apparent variables run no higher than the types of the arguments". But this "axiom" was met with resistance from all quarters.
The rejection of impredicatively defined mathematical objects (while accepting the
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s as classically understood) leads to the position in the
philosophy of mathematics
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathem ...
known as predicativism, advocated by
Henri Poincaré
Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
and by
Hermann Weyl
Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
in his ''Das Kontinuum''. Poincaré and Weyl argued that impredicative definitions are problematic only when one or more underlying sets are infinite.
Ernst Zermelo
Ernst Friedrich Ferdinand Zermelo (; ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel set theory, Z ...
in his 1908 "A new proof of the possibility of a well-ordering" presents an entire section "b. ''Objection concerning nonpredicative definition''" where he argued against "Poincaré (1906, p. 307)
ho states thata definition is 'predicative' and logically admissible only if it ''excludes'' all objects that are dependent upon the notion defined, that is, that can in any way be determined by it". He gives two examples of impredicative definitions – (i) the notion of Dedekind chains and (ii) "in analysis wherever the maximum or minimum of a previously defined "completed" set of numbers is used for further inferences. This happens, for example, in the well-known Cauchy proof...". He ends his section with the following observation: "A definition may very well rely upon notions that are equivalent to the one being defined; indeed, in every definition ''definiens'' and ''definiendum'' are equivalent notions, and the strict observance of Poincaré's demand would make every definition, hence all of science, impossible".
Zermelo's example of minimum and maximum of a previously defined "completed" set of numbers reappears in
Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
1952:42-42, where Kleene uses the example of
least upper bound
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, ...
in his discussion of impredicative definitions; Kleene does not resolve this problem. In the next paragraphs he discusses Weyl's attempt in his 1918 ''Das Kontinuum'' (''The Continuum'') to eliminate impredicative definitions and his failure to retain the "theorem that an arbitrary
non-empty
In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whil ...
set of
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s having an upper bound has a least upper bound (cf. also Weyl 1919)".
[Kleene 1952:43]
Ramsey argued that "impredicative" definitions can be harmless: for instance, the definition of "tallest person in the room" is impredicative, since it depends on a set of things of which it is an element, namely the set of all persons in the room. Concerning mathematics, an example of an impredicative definition is the smallest number in a set, which is formally defined as: if and only if for all elements of , is less than or equal to , and is in .
Burgess (2005) discusses predicative and impredicative theories at some length, in the context of
Frege
Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
's logic,
Peano arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
,
second-order arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, ...
, and
axiomatic set theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
.
See also
* ''
Gödel, Escher, Bach
''Gödel, Escher, Bach: an Eternal Golden Braid'' (abbreviated as ''GEB'') is a 1979 nonfiction book by American cognitive scientist Douglas Hofstadter.
By exploring common themes in the lives and works of logician Kurt Gödel, artist M. C. Esc ...
''
*
Impredicative polymorphism
*
Logicism
In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that – for some coherent meaning of 'logic' – mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or al ...
*
Richard's paradox
In logic, Richard's paradox is a semantical antinomy of set theory and natural language first described by the French mathematician Jules Richard in 1905. The paradox is ordinarily used to motivate the importance of distinguishing carefully betwe ...
Notes
References
*
PlanetMath article on predicativism*
John Burgess, 2005. ''Fixing Frege''. Princeton Univ. Press.
*
Solomon Feferman
Solomon Feferman (December 13, 1928July 26, 2016) was an American philosopher and mathematician who worked in mathematical logic. In addition to his prolific technical work in proof theory, computability theory, and set theory, he was known for h ...
, 2005,
Predicativity in ''The Oxford Handbook of Philosophy of Mathematics and Logic''. Oxford University Press: 590–624.
*
*
Stephen C. Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
1952 (1971 edition), ''Introduction to Metamathematics'', North-Holland Publishing Company, Amsterdam NY, . In particular cf. his ''§11 The Paradoxes'' (pp. 36–40) and ''§12 First inferences from the paradoxes'' IMPREDICATIVE DEFINITION (p. 42). He states that his 6 or so (famous) examples of paradoxes (antinomies) are all examples of impredicative definition, and says that Poincaré (1905–6, 1908) and Russell (1906, 1910) "enunciated the cause of the paradoxes to lie in these impredicative definitions" (p. 42), however, "parts of mathematics we want to retain, particularly analysis, also contain impredicative definitions." (ibid). Weyl in his 1918 ("Das Kontinuum") attempted to derive as much of analysis as was possible without the use of impredicative definitions, "but not the theorem that an arbitrary non-empty set M of real numbers having an upper bound has a least upper bound (CF. also Weyl 1919)" (p. 43).
*
Hans Reichenbach
Hans Reichenbach (; ; September 26, 1891 – April 9, 1953) was a leading philosopher of science, educator, and proponent of logical empiricism. He was influential in the areas of science, education, and of logical empiricism. He founded the ''G ...
1947, ''Elements of Symbolic Logic'', Dover Publications, Inc., NY, . Cf. his ''§40. The antinomies and the theory of types'' (pp. 218 — wherein he demonstrates how to create antinomies, including the definition of ''impredicable'' itself ("Is the definition of "impredicable" impredicable?"). He claims to show methods for eliminating the "paradoxes of syntax" ("logical paradoxes") — by use of the theory of types — and "the paradoxes of semantics" — by the use of metalanguage (his "theory of levels of language"). He attributes the suggestion of this notion to Russell and more concretely to Ramsey.
*
Jean van Heijenoort
Jean Louis Maxime van Heijenoort ( ; ; ; July 23, 1912 – March 29, 1986) was a historian of mathematical logic. He was also a personal secretary to Leon Trotsky from 1932 to 1939, and an American Trotskyist until 1947.
Life
Van Heijenoort wa ...
1967, third printing 1976, ''From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931'', Harvard University Press, Cambridge MA, (pbk.)
*{{citation, first=E., last=Zermelo, author-link=Ernst Zermelo, title=Neuer Beweis für die Möglichkeit einer Wohlordnung, journal=Mathematische Annalen, jfm=38.0096.02, volume=65, pages=107–128, year=1908, doi=10.1007/BF01450054, url=https://eudml.org/doc/158340, language=de
Mathematical logic
Philosophy of mathematics
Self-reference
Concepts in logic
Recursion