In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a pre-Lie algebra is an
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
on a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
that describes some properties of objects such as
rooted trees and
vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s on
affine space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
.
The notion of pre-Lie algebra has been introduced by
Murray Gerstenhaber in his work on
deformations of algebras.
Pre-Lie algebras have been considered under some other names, among which one can cite left-symmetric algebras, right-symmetric algebras or Vinberg algebras.
Definition
A pre-Lie algebra
is a vector space
with a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
, satisfying the relation
This identity can be seen as the invariance of the
associator
In abstract algebra, the term associator is used in different ways as a measure of the associativity, non-associativity of an algebraic structure. Associators are commonly studied as triple systems.
Ring theory
For a non-associative ring or non ...
under the exchange of the two variables
and
.
Every
associative algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
is hence also a pre-Lie algebra, as the associator vanishes identically. Although weaker than associativity, the defining relation of a pre-Lie algebra still implies that the
commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
is a
Lie bracket
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identit ...
. In particular, the
Jacobi identity
In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associ ...
for the commutator follows from cycling the
terms in the defining relation for pre-Lie algebras, above.
Examples
Vector fields on an affine space
Let
be an
open neighborhood
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a po ...
of
, parameterised by variables
. Given vector fields
,
we define
.
The difference between
and
, is
which is symmetric in
and
. Thus
defines a pre-Lie algebra structure.
Given a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
and
homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
s
from
to overlapping open neighborhoods of
, they each define a pre-Lie algebra structure
on vector fields defined on the overlap. Whilst
need not agree with
, their commutators do agree: