HOME

TheInfoList



OR:

The power loss factor β describes the loss of electrical power in CHP systems with a variable power-to-heat ratio when an increasing heat flow is extracted from the main
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of th ...
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
generating process in order to provide useful
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
. Usually, the power loss factor refers to extraction
steam turbine A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
s in
thermal power station A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources (e.g., coal, natural gas, nuclear fuel, etc.) is converted to electrical energy. The heat ...
s, which conduct a part of the steam in a heating condenser for the production of useful heat, instead of the low pressure part of the steam turbine where it could perform mechanical work. \beta = \frac The picture on the right shows in the left part the principle of steam extraction. After the intermediate-pressure section of the turbine, i.e. before the low-pressure section, steam is diverted and flows into the heating condenser, where it transfers heat to the heating circuit (temperature level TH about 100 °C) and liquefies. The remaining steam works in the low-pressure section of the turbine and is then liquefied in the condenser at approx. 30 °C. Then it is fed via the condensate pump to the feedwater circuit. The partial steam flow, which goes into the heating condenser at high temperature can no longer work in the low-pressure section and is responsible for the loss of power. The right-hand side of the picture shows the associated T-s diagram (see
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sour ...
) for an operating state in which half of the waste heat is used for heating purposes. To the left of the red square, the white area below the red line corresponds to the waste heat (qout), which is released via the condenser to the environment (ambient temperature level TA). The entire red area corresponds to the useful heat (qheat), the upper hatched part of this area corresponds to the power loss in the low pressure stage. Modern cogeneration plants have power loss ratios of about 1/5 to 1/9 when delivering heat in the range of 80 °C-120 °C.Danny Harvey
Clean building - contribution from cogeneration, trigeneration and district energy
Cogeneration and On-Site Power Production, september–october 2006, pp. 107-115 (Fig. 1)
That means in exchange of one kWh of electrical energy ca. 5 up to 9 kWh of useful heat are obtained. Based on the equivalence of power loss and gain of heat, the power loss method assigns CO2 emissions and primary energy from the fuel to the useful heat and the electrical energy.


References

{{Reflist Cogeneration Energy conversion