Poset Topology
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the poset topology associated to a
poset In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
(''S'', ≤) is the
Alexandrov topology In general topology, an Alexandrov topology is a topology in which the intersection of an ''arbitrary'' family of open sets is open (while the definition of a topology only requires this for a ''finite'' family). Equivalently, an Alexandrov top ...
(open sets are
upper set In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
s) on the poset of finite chains of (''S'', ≤), ordered by inclusion. Let ''V'' be a set of vertices. An
abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely c ...
Δ is a set of finite sets of vertices, known as faces \sigma \subseteq V, such that ::\forall \rho \, \forall \sigma \!: \ \rho \subseteq \sigma \in \Delta \Rightarrow \rho \in \Delta. Given a simplicial complex Δ as above, we define a (point set)
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
on Δ by declaring a subset \Gamma \subseteq \Delta be closed if and only if Γ is a simplicial complex, i.e. ::\forall \rho \, \forall \sigma \!: \ \rho \subseteq \sigma \in \Gamma \Rightarrow \rho \in \Gamma. This is the
Alexandrov topology In general topology, an Alexandrov topology is a topology in which the intersection of an ''arbitrary'' family of open sets is open (while the definition of a topology only requires this for a ''finite'' family). Equivalently, an Alexandrov top ...
on the poset of faces of Δ. The order complex associated to a poset (''S'', ≤) has the set ''S'' as vertices, and the finite chains of (''S'', ≤) as faces. The poset topology associated to a poset (''S'', ≤) is then the Alexandrov topology on the order complex associated to (''S'', ≤).


See also

*
Topological combinatorics The mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics. History The discipline of combinatorial topology used combinatorial concepts in topo ...


References


Poset Topology: Tools and Applications
Michelle L. Wachs, lecture notes IAS/Park City Graduate Summer School in Geometric Combinatorics (July 2004) General topology Order theory {{topology-stub