A polarization rotator is an optical device that rotates the
polarization
Polarization or polarisation may refer to:
Mathematics
*Polarization of an Abelian variety, in the mathematics of complex manifolds
*Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
axis of a
linearly polarized
In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. The term ''linear polarizati ...
light beam by an angle of choice. Such devices can be based on the
Faraday effect, on
birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefring ...
, or on
total internal reflection.
F. J. Duarte
Francisco Javier "Frank" Duarte (born c. 1954) is a laser physicist and author/editor of several books on tunable lasers.
His research on physical optics and laser development has won several awards, including an Engineering Excellence Award in ...
''Tunable Laser Optics'', 2nd Edition (CRC, New York, 2015) Chapter 5
Rotators of linearly polarized light have found widespread applications in modern optics since
laser beams tend to be linearly polarized and it is often necessary to rotate the original polarization to its orthogonal alternative.
[
]
Faraday rotators
A Faraday rotator consists of an optical material in a magnetic field. When light propagates in the material, interaction with the magnetic field causes left- and right-handed circularly polarized waves to propagate with slightly different phase velocities. Since a linearly-polarized wave can be described as a superposition of left- and right-handed circularly polarized waves, the difference in phase velocity causes the polarization direction of a linearly-polarized wave to rotate as it propagates through the material. The direction of the rotation depends on whether the light is propagating with or against the direction of the magnetic field: a rotation induced by passing through the material is not undone by passing through it in the opposite direction. This can be used to make an optical isolator.
Birefringent rotators
Half-wave plates and quarter-wave plates alter the polarization of light due to the principle of birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefring ...
. Their performance is wavelength-specific; a fact that may be a limitation. Switchable wave plates can also be manufactured out of liquid crystal
Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. T ...
s, ferro-electric liquid crystals, or magneto-optic crystals. These devices can be used to rapidly change the angle of polarization in response to an electric signal, and can be used for rapid polarization state generation (PSG) or polarization state analysis (PSA) with high accuracy. In particular, the PSG and PSA made with magneto-optic (MO) switches have been successfully used to analyze polarization mode dispersion (PMD) and polarization dependent loss (PDL) with accuracies not obtainable with rotating waveplate methods, thanks to the binary nature of the MO switches. Furthermore, MO switches have also been successfully adopted to generate differential group delay for PMD compensation and PMD emulation applications.
Prism rotators
Prism rotators use multiple internal reflections to produce beams with rotated polarization. Because they are based on total internal reflection, they are ''broadband''—they work over a broad range of wavelengths.[
;Double Fresnel rhomb: A double Fresnel rhomb rotates the linear polarization axis by 90° using four internal reflections. A disadvantage may be a low ratio of useful optical aperture to length.][ J. M. Bennett and H. E. Bennett, Polarization, in ''Handbook of Optics'', W. G. Driscoll and W. Vaughan, Eds. (McGraw-Hill, New York, 1978) Chapter 10.]
;Broadband prismatic rotator: A broadband prismatic rotator rotates the linear polarization by 90° using seven internal reflections to induce collinear rotation, as shown in the diagram. The polarization is rotated in the second reflection, but that leaves the beam in a different plane and at a right angle relative to the incident beam. The other reflections are necessary to yield a beam with its polarization rotated and collinear with the input beam. These rotators are reported to have transmission efficiencies better than 94%.
See also
* Optical rotation
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circul ...
References
{{Reflist
Optical devices
Polarization (waves)