In
mathematical logic, a literal is an
atomic formula (also known as an atom or prime formula) or its
negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
.
The definition mostly appears in
proof theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four correspo ...
(of
classical logic
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.
Characteristics
Each logical system in this class ...
), e.g. in
conjunctive normal form and the method of
resolution
Resolution(s) may refer to:
Common meanings
* Resolution (debate), the statement which is debated in policy debate
* Resolution (law), a written motion adopted by a deliberative body
* New Year's resolution, a commitment that an individual mak ...
.
Literals can be divided into two types:
[
* A positive literal is just an atom (e.g., ).
* A negative literal is the negation of an atom (e.g., ).
The polarity of a literal is positive or negative depending on whether it is a positive or negative literal.
In logics with ]double negation elimination
In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition ''A'' is logically equivalent to ''not (not ...
(where ) the complementary literal or complement of a literal can be defined as the literal corresponding to the negation of . We can write to denote the complementary literal of . More precisely, if then is and if then is . Double negation elimination occurs in classical logics but not in