Polaritonics is an intermediate regime between
photonics
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in the form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. E ...
and sub-microwave
electronics
Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
(see Fig. 1). In this regime, signals are carried by an admixture of
electromagnetic
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
and lattice vibrational
wave
In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from List of types of equilibrium, equilibrium) of one or more quantities. ''Periodic waves'' oscillate repeatedly about an equilibrium ...
s known as phonon-
polaritons, rather than
current
Currents, Current or The Current may refer to:
Science and technology
* Current (fluid), the flow of a liquid or a gas
** Air current, a flow of air
** Ocean current, a current in the ocean
*** Rip current, a kind of water current
** Current (hydr ...
s or
photons
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
. Since phonon-polaritons propagate with
frequencies
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
in the range of hundreds of
gigahertz
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose formal expression in terms of SI base un ...
to several
terahertz, polaritonics bridges the gap between electronics and photonics. A compelling motivation for polaritonics is the demand for high speed
signal processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
and linear and nonlinear terahertz
spectroscopy
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Spectro ...
. Polaritonics has distinct advantages over electronics, photonics, and traditional terahertz spectroscopy in that it offers the potential for a fully integrated platform that supports terahertz wave generation, guidance, manipulation, and readout in a single patterned material.
Polaritonics, like electronics and photonics, requires three elements: robust waveform generation, detection, and guidance and control. Without all three, polaritonics would be reduced to just phonon-polaritons, just as electronics and photonics would be reduced to just electromagnetic radiation. These three elements can be combined to enable device functionality similar to that in electronics and photonics.
Illustration
To illustrate the functionality of polaritonic devices, consider the hypothetical circuit in Fig. 2 (right). The optical excitation pulses that generate phonon-polaritons, in the top left and bottom right of the crystal, enter normal to the crystal face (into the page). The resulting phonon-polaritons will travel laterally away from the excitation regions. Entrance into the
waveguide
A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency w ...
s is facilitated by reflective and focusing structures. Phonon-polaritons are guided through the circuit by terahertz waveguides carved into the crystal. Circuit functionality resides in the interferometer structure at the top and the coupled waveguide structure at the bottom of the circuit. The latter employs a
photonic bandgap structure with a defect (yellow) that could provide
bistability
In a dynamical system, bistability means the system has two Stability theory, stable equilibrium states. A bistable structure can be resting in either of two states. An example of a mechanical device which is bistable is a light switch. The ...
for the coupled waveguide.
Waveform generation
Phonon-polaritons generated in
ferroelectric
In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
crystals propagate nearly laterally to the excitation pulse due to the high
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
constants of
ferroelectric
In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
crystals, facilitating easy separation of phonon-polaritons from the excitation pulses that generated them. Phonon-polaritons are therefore available for direct observation, as well as coherent manipulation, as they move from the excitation region into other parts of the crystal. Lateral propagation is paramount to a polaritonic platform in which generation and propagation take place in a single crystal. A full treatment of the
Cherenkov-radiation-like terahertz wave response reveals that in general, there is also a forward propagation component that must be considered in many cases.
Signal detection
Direct observation of phonon-polariton propagation was made possible by real-space imaging, in which the spatial and temporal profiles of phonon-polaritons are imaged onto a
CCD camera
A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a ...
using Talbot phase-to-amplitude conversion. This by itself was an extraordinary breakthrough. It was the first time that electromagnetic waves were imaged directly, appearing much like ripples in a pond when a rock plummets through the water's surface (see Fig. 3). Real-space imaging is the preferred detection technique in polaritonics, though other more conventional techniques like optical Kerr-gating, time resolved
diffraction
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
, interferometric probing, and terahertz field induced
second-harmonic generation
Second-harmonic generation (SHG), also known as frequency doubling, is the lowest-order wave-wave nonlinear interaction that occurs in various systems, including optical, radio, atmospheric, and magnetohydrodynamic systems. As a prototype behav ...
are useful in some applications where real-space imaging is not easily employed. For example, patterned materials with feature sizes on the order of a few tens of
micrometre
The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
s cause parasitic scattering of the imaging light. Phonon-polariton detection is then only possible by focusing a more conventional probe, like those mentioned before, into an unblemished region of the crystal.
Guidance and control
The last element requisite to polaritonics is guidance and control. Complete lateral propagation parallel to the crystal plane is achieved by generating phonon-polaritons in crystals of thickness on the order of the phonon-polariton wavelength. This forces propagation to take place in one or more of the available slab waveguide modes. However, dispersion in these modes can be radically different from that in bulk propagation, and in order to exploit this, the dispersion must be understood.
Control and guidance of phonon-polariton propagation may also be achieved by guided wave, reflective, diffractive, and dispersive elements, as well as photonic and effective index crystals that can be integrated directly into the host crystal. However,
lithium niobate
Lithium niobate () is a synthetic salt consisting of niobium, lithium
Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperatur ...
,
lithium tantalate
Lithium tantalate is the inorganic compound with the formula Li Ta O3. It is a white, diamagnetic, water-insoluble solid. The compound has the perovskite structure. It has optical, piezoelectric, and pyroelectric properties. Considerable infor ...
, and other
perovskite
Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as , known as the perovskite (stru ...
s are impermeable to the standard techniques of material patterning. In fact, the only
etchant known to be even marginally successful is
hydrofluoric acid
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive. A common concentration is 49% (48–52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling p ...
(HF), which etches slowly and predominantly in the direction of the crystal optic axis.
Laser Micromachining
Femtosecond laser
micromachining is used for device fabrication by milling 'air' holes and/or troughs into ferroelectric crystals by directing them through the focus region of a femtosecond laser beam. . The advantages of femtosecond laser micromachining for a wide range of materials have been well documented. In brief, free electrons are created within the beam focus through
multiphoton excitation. Because the peak intensity of a
femtosecond laser pulse is many orders of magnitude higher than that from longer pulse or continuous wave lasers, the electrons are rapidly excited, heated to form a
quantum plasma. Particularly in dielectric materials, the electrostatic instability, induced by the
plasma, of the remaining lattice
ions
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
results in ejection of these ions and hence
ablation
Ablation ( – removal) is the removal or destruction of something from an object by vaporization, chipping, erosion, erosive processes, or by other means. Examples of ablative materials are described below, including spacecraft material for as ...
of the material, leaving a material void in the laser focus region. Also, since the pulse duration and ablation time scales are much faster than the
thermalization time, femtosecond laser micromachining does not suffer from the adverse effects of a heat-affected-zone, like cracking and melting in regions neighboring the intended damage region.
See also
*
Electronics
Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
*
Photonics
Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in the form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. E ...
*
Polariton
In physics, polaritons are bosonic quasiparticles resulting from strong coupling of electromagnetic waves (photon) with an electric or magnetic dipole-carrying excitation (state) of solid or liquid matter (such as a phonon, plasmon, or an exc ...
*
Spintronics
Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-st ...
*
Polariton laser
External references
*
*
* David W. Ward
Polaritonics: An Intermediate Regime between Electronics and Photonics Ph.D. Thesis, Massachusetts Institute of Technology, 2005. This is the main reference for this article.
*
*
*
*
*
External links
The research groupat
MIT
The Massachusetts Institute of Technology (MIT) is a private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of modern technology and sc ...
that invented polaritonics.
References
{{Reflist
Photonics
Nanoelectronics
Solid state engineering