HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a pointed space or based space is a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as x_0, that remains unchanged during subsequent discussion, and is kept track of during all operations. Maps of pointed spaces (based maps) are continuous maps preserving basepoints, i.e., a map f between a pointed space X with basepoint x_0 and a pointed space Y with basepoint y_0 is a based map if it is continuous with respect to the topologies of X and Y and if f\left(x_0\right) = y_0. This is usually denoted :f : \left(X, x_0\right) \to \left(Y, y_0\right). Pointed spaces are important in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, particularly in
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, where many constructions, such as the
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
, depend on a choice of basepoint. The
pointed set In mathematics, a pointed set (also based set or rooted set) is an ordered pair (X, x_0) where X is a Set (mathematics), set and x_0 is an element of X called the base point (also spelled basepoint). Map (mathematics), Maps between pointed sets ...
concept is less important; it is anyway the case of a pointed
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
. Pointed spaces are often taken as a special case of the
relative topology Relative may refer to: General use *Kinship and family, the principle binding the most basic social units of society. If two people are connected by circumstances of birth, they are said to be ''relatives''. Philosophy * Relativism, the concept ...
, where the subset is a single point. Thus, much of
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
is usually developed on pointed spaces, and then moved to relative topologies in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
.


Category of pointed spaces

The
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
of all pointed spaces forms a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
Top\bull with basepoint preserving continuous maps as
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s. Another way to think about this category is as the
comma category In mathematics, a comma category (a special case being a slice category) is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a Category (mathematics), category to one another ...
, (\ \downarrow Top) where \ is any one point space and Top is the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
. (This is also called a
coslice category In mathematics, an overcategory (also called a slice category) is a construction from category theory used in multiple contexts, such as with covering spaces (espace étalé). They were introduced as a mechanism for keeping track of data surroundi ...
denoted \ /Top.) Objects in this category are continuous maps \ \to X. Such maps can be thought of as picking out a basepoint in X. Morphisms in (\ \downarrow Top) are morphisms in Top for which the following diagram commutes:
It is easy to see that commutativity of the diagram is equivalent to the condition that f preserves basepoints. As a pointed space, \ is a
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in Top\, while it is only a
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in Top. There is a
forgetful functor In mathematics, more specifically in the area of category theory, a forgetful functor (also known as a stripping functor) "forgets" or drops some or all of the input's structure or properties mapping to the output. For an algebraic structure of ...
Top\ \to Top which "forgets" which point is the basepoint. This functor has a
left adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
which assigns to each topological space X the
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
of X and a one-point space \ whose single element is taken to be the basepoint.


Operations on pointed spaces

* A subspace of a pointed space X is a topological subspace A \subseteq X which shares its basepoint with X so that the
inclusion map In mathematics, if A is a subset of B, then the inclusion map is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. An inclusion map may also be referred to as an inclu ...
is basepoint preserving. * One can form the
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of a pointed space X under any
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
. The basepoint of the quotient is the image of the basepoint in X under the quotient map. * One can form the product of two pointed spaces \left(X, x_0\right), \left(Y, y_0\right) as the topological product X \times Y with \left(x_0, y_0\right)serving as the basepoint. * The
coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The cop ...
in the category of pointed spaces is the , which can be thought of as the 'one-point union' of spaces. * The
smash product In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) and is the quotient of the product space under the identifications for all in and in . The smash prod ...
of two pointed spaces is essentially the
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of the direct product and the wedge sum. We would like to say that the smash product turns the category of pointed spaces into a
symmetric monoidal category In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sen ...
with the pointed
0-sphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
as the unit object, but this is false for general spaces: the associativity condition might fail. But it is true for some more restricted categories of spaces, such as compactly generated weak Hausdorff ones. * The reduced suspension \Sigma X of a pointed space X is (up to a
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
) the smash product of X and the pointed circle S^1. * The reduced suspension is a functor from the category of pointed spaces to itself. This functor is
left adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
to the functor \Omega taking a pointed space X to its loop space \Omega X.


See also

* * * * *


References

* *
mathoverflow discussion on several base points and groupoids
{{DEFAULTSORT:Pointed Space Topology Homotopy theory Categories in category theory Topological spaces