The point distribution model is a model for representing the mean geometry of a shape and some statistical modes of geometric variation inferred from a training set of shapes.
Background
The point distribution model concept has been developed by Cootes, Taylor ''et al.''
and became a standard in
computer vision
Computer vision is an Interdisciplinarity, interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to understand and automate t ...
for the
statistical study of shape and for
segmentation of
medical images
Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care prac ...
[ where shape priors really help interpretation of noisy and low-contrasted ]pixel
In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest point in an all points addressable display device.
In most digital display devices, pixels are the s ...
s/voxel
In 3D computer graphics, a voxel represents a value on a regular grid in three-dimensional space. As with pixels in a 2D bitmap, voxels themselves do not typically have their position (i.e. coordinates) explicitly encoded with their values. ...
s. The latter point leads to active shape model Active shape models (ASMs) are statistical models of the shape of objects which iteratively deform to fit to an example of the object in a new image, developed by Tim Cootes and Chris Taylor in 1995. The shapes are constrained by the PDM ( point dis ...
s (ASM) and active appearance model An active appearance model (AAM) is a computer vision algorithm for matching a statistical model of object shape and appearance to a new image. They are built during a training phase. A set of images, together with coordinates of landmarks that appe ...
s (AAM).
Point distribution models rely on landmark point
In morphometrics, landmark point or shortly landmark is a point in a shape object in which correspondences between and within the populations of the object are preserved. In other disciplines, landmarks may be known as vertices, anchor points, co ...
s. A landmark is an annotating point posed by an anatomist onto a given locus for every shape instance across the training set population. For instance, the same landmark will designate the tip of the index finger
The index finger (also referred to as forefinger, first finger, second finger, pointer finger, trigger finger, digitus secundus, digitus II, and many other terms) is the second digit of a human hand. It is located between the thumb and the mi ...
in a training set of 2D hands outlines. Principal component analysis
Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and ...
(PCA), for instance, is a relevant tool for studying correlations of movement between groups of landmarks among the training set population. Typically, it might detect that all the landmarks located along the same finger move exactly together across the training set examples showing different finger spacing for a flat-posed hands collection.
Details
First, a set of training images are manually landmarked with enough corresponding landmarks to sufficiently approximate the geometry of the original shapes. These landmarks are aligned using the generalized procrustes analysis, which minimizes the least squared error between the points.
aligned landmarks in two dimensions are given as
:.
It's important to note that each landmark should represent the same anatomical location. For example, landmark #3, might represent the tip of the ring finger across all training images.
Now the shape outlines are reduced to sequences of landmarks, so that a given training shape is defined as the vector . Assuming the scattering is gaussian
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below.
There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymo ...
in this space, PCA is used to compute normalized eigenvectors
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
and eigenvalues
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of the covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements o ...
across all training shapes. The matrix of the top eigenvectors is given as , and each eigenvector describes a principal mode of variation along the set.
Finally, a linear combination of the eigenvectors is used to define a new shape , mathematically defined as:
:
where is defined as the mean shape across all training images, and is a vector of scaling values for each principal component. Therefore, by modifying the variable an infinite number of shapes can be defined. To ensure that the new shapes are all within the variation seen in the training set, it is common to only allow each element of to be within 3 standard deviations, where the standard deviation of a given principal component is defined as the square root of its corresponding eigenvalue.
PDM's can be extended to any arbitrary number of dimensions, but are typically used in 2D image and 3D volume applications (where each landmark point is or ).
Discussion
An eigenvector, interpreted in euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
, can be seen as a sequence of euclidean vectors associated to corresponding landmark and designating a compound move for the whole shape. Global nonlinear variation is usually well handled provided nonlinear variation is kept to a reasonable level. Typically, a twisting nematode worm is used as an example in the teaching of kernel PCA-based methods.
Due to the PCA properties: eigenvectors are mutually orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
, form a basis of the training set cloud in the shape space, and cross at the 0 in this space, which represents the mean shape. Also, PCA is a traditional way of fitting a closed ellipsoid to a Gaussian cloud of points (whatever their dimension): this suggests the concept of bounded variation.
The idea behind PDMs is that eigenvectors can be linearly combined to create an infinity of new shape instances that will 'look like' the one in the training set. The coefficients are bounded alike the values of the corresponding eigenvalues, so as to ensure the generated 2n/3n-dimensional dot will remain into the hyper-ellipsoidal allowed domain— allowable shape domain (ASD).[
]
See also
* Procrustes analysis
In statistics, Procrustes analysis is a form of statistical shape analysis used to analyse the distribution of a set of shapes. The name ''Procrustes'' ( el, Προκρούστης) refers to a bandit from Greek mythology who made his victims fit ...
References
External links
Flexible Models for Computer Vision
Tim Cootes, Manchester University.
Computer vision