Poincaré–Hopf Theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Poincaré–Hopf theorem (also known as the Poincaré–Hopf index formula, Poincaré–Hopf index theorem, or Hopf index theorem) is an important theorem that is used in
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
. It is named after
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
and
Heinz Hopf Heinz Hopf (19 November 1894 – 3 June 1971) was a German mathematician who worked on the fields of dynamical systems, topology and geometry. Early life and education Hopf was born in Gräbschen, German Empire (now , part of Wrocław, Poland) ...
. The Poincaré–Hopf theorem is often illustrated by the special case of the
hairy ball theorem The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous function, continuous tangent vector field on even-dimensional n‑sphere, ''n''-spheres. For the ord ...
, which simply states that there is no smooth
vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
on an even-dimensional
n-sphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
having no sources or sinks.


Formal statement

Let M be a differentiable manifold, of dimension n, and v a vector field on M. Suppose that x is an isolated zero of v, and fix some
local coordinates Local coordinates are the ones used in a ''local coordinate system'' or a ''local coordinate space''. Simple examples: * Houses. In order to work in a house construction, the measurements are referred to a control arbitrary point that will allow ...
near x. Pick a closed ball D centered at x, so that x is the only zero of v in D. Then the
index Index (: indexes or indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on the Halo Array in the ...
of v at x, \operatorname_x(v), can be defined as the degree of the map u : \partial D \to \mathbb S^ from the boundary of D to the (n-1)-sphere given by u(z)=v(z)/\, v(z)\, . Theorem. Let M be a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
. Let v be a
vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
on M with isolated zeroes. If M has boundary, then we insist that v be pointing in the outward normal direction along the boundary. Then we have the formula :\sum_i \operatorname_(v) = \chi(M)\, where the sum of the indices is over all the isolated zeroes of v and \chi(M) is the
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of M. A particularly useful corollary is when there is a non-vanishing vector field implying Euler characteristic 0. The theorem was proven for two dimensions by
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
and later generalized to higher dimensions by
Heinz Hopf Heinz Hopf (19 November 1894 – 3 June 1971) was a German mathematician who worked on the fields of dynamical systems, topology and geometry. Early life and education Hopf was born in Gräbschen, German Empire (now , part of Wrocław, Poland) ...
.H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1926), pp. 209–221.


Significance

The Euler characteristic of a closed surface is a purely
topological Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
concept, whereas the index of a vector field is purely analytic. Thus, this theorem establishes a deep link between two seemingly unrelated areas of mathematics. It is perhaps as interesting that the proof of this theorem relies heavily on integration, and, in particular,
Stokes' theorem Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates th ...
, which states that the integral of the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
of a
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications ...
is equal to the integral of that form over the boundary. In the special case of a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
without boundary, this amounts to saying that the integral is 0. But by examining vector fields in a sufficiently small neighborhood of a source or sink, we see that sources and sinks contribute
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
amounts (known as the index) to the total, and they must all sum to 0. This result may be considered one of the earliest of a whole series of theorems (e.g. Atiyah–Singer index theorem, De Rham's theorem, Grothendieck–Riemann–Roch theorem) establishing deep relationships between
geometric Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
and analytical or physical concepts. They play an important role in the modern study of both fields.


Sketch of proof

# Embed ''M'' in some high-dimensional Euclidean space. (Use the
Whitney embedding theorem In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: *The strong Whitney embedding theorem states that any smooth real - dimensional manifold (required also to be Hausdorf ...
.) # Take a small neighborhood of ''M'' in that Euclidean space, ''N''ε. Extend the vector field to this neighborhood so that it still has the same zeroes and the zeroes have the same indices. In addition, make sure that the extended vector field at the boundary of ''N''ε is directed outwards. # The sum of indices of the zeroes of the old (and new) vector field is equal to the degree of the Gauss map from the boundary of ''N''ε to the sphere. Thus, the sum of the indices is independent of the actual vector field, and depends only on the manifold ''M''. Technique: cut away all zeroes of the vector field with small neighborhoods. Then use the fact that the degree of a map from the boundary of an n-dimensional manifold to an sphere, that can be extended to the whole n-dimensional manifold, is zero. # Finally, identify this sum of indices as the Euler characteristic of ''M''. To do that, construct a very specific vector field on ''M'' using a
triangulation In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications In surveying Specifically in surveying, triangulation involves only angle m ...
of ''M'' for which it is clear that the sum of indices is equal to the Euler characteristic.


Generalization

It is still possible to define the index for a vector field with nonisolated zeroes. A construction of this index and the extension of Poincaré–Hopf theorem for vector fields with nonisolated zeroes is outlined in Section 1.1.2 of . Another generalization that uses only compact triangulable spaces and continuous mappings with finitely many fixed points is the Lefschetz-Hopf theorem. Since every vector field induces a flow on manifolds and fixed points of small flows correspond to zeroes of vector fields (and indices of zeroes equal indices of fixed points), the Poincare-Hopf theorem follows immediately from this.


See also

* Eisenbud–Levine–Khimshiashvili signature formula * Hopf theorem


References

* * {{DEFAULTSORT:Poincare-Hopf theorem Theorems in differential topology Differential topology