physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
(an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
to create another quasiparticle called a plasmon polariton.
Derivation
The plasmon was initially proposed in 1952 by
David Pines
David Pines (June 8, 1924 May 3, 2018) was the founding director of the Institute for Complex Adaptive Matter (ICAM) and the International Institute for Complex Adaptive Matter (I2CAM) (respectively, United States-wide and international instit ...
and David Bohm and was shown to arise from a Hamiltonian for the long-range electron-electron correlations.
Since plasmons are the quantization of classical plasma oscillations, most of their properties can be derived directly from
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
Th ...
.
Explanation
Plasmons can be described in the classical picture as an
oscillation
Oscillation is the repetitive or Periodic function, periodic variation, typically in time, of some measure about a central value (often a point of Mechanical equilibrium, equilibrium) or between two or more different states. Familiar examples o ...
of electron density with respect to the fixed positive ions in a
metal
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
. To visualize a plasma oscillation, imagine a cube of metal placed in an external electric field pointing to the right.
Electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary partic ...
s will move to the left side (uncovering positive ions on the right side) until they cancel the field inside the metal. If the electric field is removed, the electrons move to the right, repelled by each other and attracted to the positive ions left bare on the right side. They oscillate back and forth at the plasma frequency until the
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
is lost in some kind of
resistance
Resistance may refer to:
Arts, entertainment, and media Comics
* Either of two similarly named but otherwise unrelated comic book series, both published by Wildstorm:
** ''Resistance'' (comics), based on the video game of the same title
** ''T ...
optical
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
properties of
metal
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
s and semiconductors. Frequencies of
light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
reflected Reflection or reflexion may refer to:
Science and technology
* Reflection (physics), a common wave phenomenon
** Specular reflection, reflection from a smooth surface
*** Mirror image, a reflection in a mirror or in water
** Signal reflection, in ...
by a material because the electrons in the material screen the electric field of the light. Light of frequencies above the plasma frequency is transmitted by a material because the electrons in the material cannot respond fast enough to screen it. In most metals, the plasma frequency is in the
ultraviolet
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiati ...
, making them shiny (reflective) in the visible range. Some metals, such as
copper
Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish ...
and
gold
Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
, have electronic interband transitions in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color. In
semiconductor
A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
s, the
valence electron
In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair f ...
plasmon frequency is usually in the deep ultraviolet, while their electronic interband transitions are in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color which is why they are reflective. It has been shown that the plasmon frequency may occur in the mid-infrared and near-infrared region when semiconductors are in the form of nanoparticles with heavy doping.
The plasmon energy can often be estimated in the free electron model as
:
where is the conduction electron density, is the
elementary charge
The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a funda ...
Surface plasmons are those plasmons that are confined to surfaces and that interact strongly with light resulting in a polariton. They occur at the interface of a material exhibiting positive real part of their relative permittivity, i.e.
dielectric constant
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
, (e.g. vacuum, air, glass and other dielectrics) and a material whose real part of permittivity is negative at the given frequency of light, typically a metal or heavily doped semiconductors. In addition to opposite sign of the real part of the permittivity, the magnitude of the real part of the permittivity in the negative permittivity region should typically be larger than the magnitude of the permittivity in the positive permittivity region, otherwise the light is not bound to the surface (i.e. the surface plasmons do not exist) as shown in the famous book by Heinz Raether. At visible wavelengths of light, e.g. 632.8 nm wavelength provided by a He-Ne laser, interfaces supporting surface plasmons are often formed by metals like silver or gold (negative real part permittivity) in contact with dielectrics such as air or silicon dioxide. The particular choice of materials can have a drastic effect on the degree of light confinement and propagation distance due to losses. Surface plasmons can also exist on interfaces other than flat surfaces, such as particles, or rectangular strips, v-grooves, cylinders, and other structures. Many structures have been investigated due to the capability of surface plasmons to confine light below the diffraction limit of light. One simple structure that was investigated was a multilayer system of copper and nickel. Mladenovic ''et al.'' report the use of the multilayers as if its one plasmonic material. The copper oxide is prevented with the addition of the nickel layers. It is an easy path the integration of plasmonics to use copper as the plasmonic material because it is the most common choice for metallic plating along with nickel. The multilayers serve as a diffractive grating for the incident light. Up to 40 percent transmission can be achieved at normal incidence with the multilayer system depending on the thickness ratio of copper to nickel. Therefore, the use of already popular metals in a multilayer structure prove to be solution for plasmonic integration.
Surface plasmons can play a role in surface-enhanced Raman spectroscopy and in explaining anomalies in diffraction from metal gratings ( Wood's anomaly), among other things. Surface plasmon resonance is used by
biochemist
Biochemists are scientists who are trained in biochemistry. They study chemical processes and chemical transformations in living organisms. Biochemists study DNA, proteins and cell parts. The word "biochemist" is a portmanteau of "biological che ...
s to study the mechanisms and kinetics of ligands binding to receptors (i.e. a substrate binding to an
enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
). Multi-parametric surface plasmon resonance can be used not only to measure molecular interactions but also nanolayer properties or structural changes in the adsorbed molecules, polymer layers or graphene, for instance.
Surface plasmons may also be observed in the X-ray emission spectra of metals. A dispersion relation for surface plasmons in the X-ray emission spectra of metals has been derived (Harsh and Agarwal).
More recently surface plasmons have been used to control colors of materials. This is possible since controlling the particle's shape and size determines the types of surface plasmons that can be coupled into and propagate across it. This, in turn, controls the interaction of light with the surface. These effects are illustrated by the historic stained glass which adorn medieval cathedrals. Some stained glass colors are produced by metal nanoparticles of a fixed size which interact with the optical field to give glass a vibrant red color. In modern science, these effects have been engineered for both visible light and microwave radiation. Much research goes on first in the microwave range because at this wavelength, material surfaces and samples can be produced mechanically because the patterns tend to be on the order of a few centimeters. The production of optical range surface plasmon effects involves making surfaces which have features <400 nm. This is much more difficult and has only recently become possible to do in any reliable or available way.
Recently, graphene has also been shown to accommodate surface plasmons, observed via near field infrared optical microscopy techniques and infrared spectroscopy. Potential applications of graphene plasmonics mainly addressed the terahertz to midinfrared frequencies, such as optical modulators, photodetectors, biosensors.
Possible applications
The position and intensity of plasmon absorption and emission peaks are affected by molecular adsorption, which can be used in molecular sensors. For example, a fully operational device detecting casein in milk has been prototyped, based on detecting a change in absorption of a gold layer. Localized surface plasmons of metal nanoparticles can be used for sensing different types of molecules, proteins, etc.
Plasmons are being considered as a means of transmitting information on computer chips, since plasmons can support much higher frequencies (into the 100 THz range, whereas conventional wires become very lossy in the tens of GHz). However, for plasmon-based electronics to be practical, a plasmon-based amplifier analogous to the
transistor
upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
, called a plasmonstor, needs to be created.
Plasmons have also been proposed as a means of high-resolution
lithography
Lithography () is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone ( lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by the German ...
and microscopy due to their extremely small wavelengths; both of these applications have seen successful demonstrations in the lab environment.
Finally, surface plasmons have the unique capacity to confine light to very small dimensions, which could enable many new applications.
Surface plasmons are very sensitive to the properties of the materials on which they propagate. This has led to their use to measure the thickness of monolayers on
colloid
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others exten ...
films, such as screening and quantifying
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
binding events. Companies such as Biacore have commercialized instruments that operate on these principles. Optical surface plasmons are being investigated with a view to improve makeup by L'Oréal and others.
In 2009, a Korean research team found a way to greatly improve organic light-emitting diode efficiency with the use of plasmons.
A group of European researchers led by IMEC has begun work to improve
solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.photovoltaic devices to function optimally, ultra-thin transparent conducting oxides are necessary.
Full color holograms using ''plasmonics'' have been demonstrated.
Plasmon-soliton
Plasmon- soliton mathematically refers to the hybrid solution of nonlinear amplitude equation e.g. for a metal-nonlinear media considering both the plasmon mode and solitary solution. A soliplasmon resonance is on the other hand considered as a quasiparticle combining the surface plasmon mode with spatial soliton as a
result of a resonant interaction. To achieve one dimensional solitary propagation in a plasmonic waveguide while the surface plasmons should be localized at the interface, the lateral distribution of the filed envelop should also be unchanged.
Graphene
Graphene () is an allotrope of carbon consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice nanostructure.
-based waveguide is a suitable platform for supporting hybrid plasmon-solitons due to the large effective area and huge nonlinearity. For example, the propagation of solitary waves in a graphene-dielectric heterostructure may appear as in the form of higher order solitons or discrete solitons resulting from the competition between diffraction and nonlinearity.