Invasive probe methods
Ball-pen probe
A ball-pen probe is novel technique used to measure directly the plasma potential in magnetized plasmas. The probe was invented by Jiří Adámek in the Institute of Plasma Physics AS CR in 2004. The ball-pen probe balances the electron saturation current to the same magnitude as that of the ion saturation current. In this case, its floating potential becomes identical to the plasma potential. This goal is attained by a ceramic shield, which screens off an adjustable part of the electron current from the probe collector due to the much smaller gyro–radius of the electrons. The electron temperature is proportional to the difference of ball-pen probe(plasma potential) and Langmuir probe (floating potential) potential. Thus, the electron temperature can be obtained directly with high temporal resolution without additionalFaraday cup
The conventional Faraday cup is applied for measurements of ion (or electron) flows from plasma boundaries and forLangmuir probe
Measurements with electric probes, called Langmuir probes, are the oldest and most often used procedures for low-temperature plasmas. The method was developed byMagnetic (B-dot) probe
If the magnetic field in the plasma is not stationary, either because the plasma as a whole is transient or because the fields are periodic (radio-frequency heating), the rate of change of the magnetic field with time (, read "B-dot") can be measured locally with a loop or coil of wire. Such coils exploit Faraday's law, whereby a changing magnetic field induces an electric field. The induced voltage can be measured and recorded with common instruments. Also, by Ampere's law, the magnetic field is proportional to the currents that produce it, so the measured magnetic field gives information about the currents flowing in the plasma. Both currents and magnetic fields are important in understanding fundamental plasma physics.Energy analyzer
An energy analyzer is a probe used to measure the energy distribution of the particles in a plasma. The charged particles are typically separated by their velocities from the electric and/or magnetic fields in the energy analyzer, and then discriminated by only allowing particles with the selected energy range to reach the detector. Energy analyzers that use an electric field as the discriminator are also known as retarding field analyzers. It usually consists of a set of grids biased at different potentials to set up an electric field to repel particles lower than the desired amount of energy away from the detector. Analyzers with cylindrical or conical face-field can be more effective in such measurements. In contrast, energy analyzers that employ the use of a magnetic field as a discriminator are very similar toProton radiography
Proton radiography uses a proton beam from a single source to interact with the magnetic field and/or the electric field in the plasma and the intensity profile of the beam is measured on a screen after the interaction. The magnetic and electric fields in the plasma deflect the beam's trajectory and the deflection causes modulation in the intensity profile. From the intensity profile, one can measure the integrated magnetic field and/or electric field.Self Excited Electron Plasma Resonance Spectroscopy (SEERS)
Nonlinear effects like the I-V characteristic of the boundary sheath are utilized for Langmuir probe measurements but they are usually neglected for modelling of RF discharges due to their very inconvenient mathematical treatment. The Self Excited Electron Plasma Resonance Spectroscopy (SEERS) utilizes exactly these nonlinear effects and known resonance effects in RF discharges. The nonlinear elements, in particular the sheaths, provide harmonics in the discharge current and excite the plasma and the sheath at their series resonance characterized by the so-called geometric resonance frequency. SEERS provides the spatially and reciprocally averaged electron plasma density and the effective electron collision rate. The electron collision rate reflects stochastic (pressure) heating and ohmic heating of the electrons. The model for the plasma bulk is based on 2d-fluid model (zero and first order moments of Boltzmann equation) and the full set of the Maxwellian equations leading to thePassive spectroscopy
Passive spectroscopic methods simply observe the radiation emitted by the plasma. They can be collected by diagnostics such as the filterscope, which is used in variousDoppler shift
If the plasma (or one ionic component of the plasma) is flowing in the direction of the line of sight to the observer, emission lines will be seen at a different frequency due to theDoppler broadening
The thermal motion of ions will result in a shift of emission lines up or down, depending on whether the ion is moving toward or away from the observer. The magnitude of the shift is proportional to the velocity along the line of sight. The net effect is a characteristic broadening of spectral lines, known as Doppler broadening, from which the ion temperature can be determined.Stark effect
The splitting of some emission lines due to theStark broadening
Irrespectively of the presence of macroscopic electric fields, any single atom is affected by microscopic electric fields due to the neighboring charged plasma particles. This results in the Stark broadening of spectral lines that can be used to determine the plasma density.Spectral line ratios
The brightness of spectral lines emitted by atoms in a plasma depends on the plasma temperature and density. If a sufficiently complete collisional radiative model is used, the temperature (and, to a lesser degree, density) of plasmas can often be inferred by taking ratios of the emission intensities of various atomic spectral lines.Zeeman effect
The presence of a magnetic field splits the atomic energy levels due to theActive spectroscopy
Active spectroscopic methods stimulate the plasma atoms in some way and observe the result (emission of radiation, absorption of the stimulating light or others).Absorption spectroscopy
By shining through the plasma a laser with a wavelength, tuned to a certain transition of one of the species present in the plasma, the absorption profile of that transition could be obtained. This profile provides information not only for the plasma parameters, that could be obtained from the emission profile, but also for the line-integrated number density of the absorbing species.Beam emission spectroscopy
A beam of neutral atoms is fired into a plasma. Some atoms are excited by collisions within the plasma and emit radiation. This can be used to probe density fluctuations in a turbulent plasma.Charge exchange recombination spectroscopy
In extremely high-temperature plasmas, such as those found in magnetic fusion experiments, light elements become fully ionized and do not emit line radiation. However, when a beam of neutral atoms is fired into the plasma, a process known as charge exchange occurs. During charge exchange, electrons from the neutral beam atoms are transferred to the highly energetic plasma ions, leading to the formation of hydrogenic ions. These newly formed ions promptly emit line radiation, which is subsequently analyzed to obtain information about the plasma, including ion density, temperature, and velocity. One example of this is the Fast-Ion Deuterium-Alpha (FIDA) method employed in tokamaks. In this technique, charge exchange occurs between the neutral beam atoms and the fastLaser-induced fluorescence
Laser-induced fluorescence (LIF) is a spectroscopic technique employed for the investigation of plasma properties by observing the fluorescence emitted when the plasma is stimulated by laser radiation. This method allows for the measurement of plasma parameters such as ion flow, ion temperature, magnetic field strength, and plasma density. Typically, tunable dye lasers are utilized to carry out these measurements. The pioneering application of LIF in plasma physics occurred in 1975 when researchers used it to measure the ion velocity distribution function in an argon plasma. Various LIF techniques have since been developed, including the one-photon LIF technique and the two-photon absorption laser-induced fluorescence (TALIF).Two-photon absorption laser-induced fluorescence
TALIF is a modification of the laser-induced fluorescence technique. In this approach, the upperPhotodetachment
Photodetachment combines Langmuir probe measurements with an incident laser beam. The incident laser beam is optimised, spatially, spectrally, and pulse energy, to detach an electron bound to a negative ion. Langmuir probe measurements are conducted to measure the electron density in two situations, one without the incident laser and one with the incident laser. The increase in the electron density with the incident laser gives the negative ion density.Motional Stark effect
If an atom is moving in a magnetic field, theOptical effects from free electrons
The optical diagnostics above measure line radiation from atoms. Alternatively, the effects of free charges on electromagnetic radiation can be used as a diagnostic.Electron cyclotron emission
In magnetized plasmas, electrons will gyrate around magnetic field lines and emit cyclotron radiation. The frequency of the emission is given by the cyclotron resonance condition. In a sufficiently thick and dense plasma, the intensity of the emission will follow Planck's law, and only depend on the electron temperature.Faraday rotation
The Faraday effect will rotate the plane of polarization of a beam passing through a plasma with a magnetic field in the direction of the beam. This effect can be used as a diagnostic of the magnetic field, although the information is mixed with the density profile and is usually an integral value only.Interferometry
If a plasma is placed in one arm of anThomson scattering
Scattering of laser light from the electrons in a plasma is known as Thomson scattering. The electron temperature can be determined very reliably from the Doppler broadening of the laser line. The electron density can be determined from the intensity of the scattered light, but a careful absolute calibration is required. Although Thomson scattering is dominated by scattering from electrons, since the electrons interact with the ions, in some circumstances information on the ion temperature can also be extracted.Neutron diagnostics
Fusion plasmas using D-T fuel produce 3.5 MeV alpha particles and 14.1 MeV neutrons. By measuring the neutron flux, plasma properties such as ion temperature and fusion power can be determined.See also
* Laser schlieren deflectometryReferences
Further reading
* * * {{DEFAULTSORT:Plasma Diagnostics Measuring instruments