History
Following the discovery of Neptune in 1846, there was considerable speculation that another planet might exist beyond its orbit. The best-known of these theories predicted the existence of a distant planet that was influencing the orbits ofBatygin and Brown hypothesis
Orbit
Planet Nine was initially hypothesized to follow anMass and radius
Planet Nine is estimated to have 5–10 times the mass and 2–4 times the radius of the Earth. Brown thinks that if Planet Nine exists, its mass is sufficient to clear its orbit of large bodies in 4.5 billion years, the age of the Solar System, and that its gravity dominates the outer edge of the Solar System, which is sufficient to make it a planet by current definitions. Astronomer Jean-Luc Margot has also stated that Planet Nine satisfies his criteria and would qualify as a planet if and when it is detected. Later simulations by Amir Siraj and colleagues in 2025 have refined estimates of the planet's mass to 4.4 ± 1.1 times that of Earth.Internal composition
Given a hypothesized ~10 Earth masses and using a theory of exoplanet sizes in the Kepler-454 system, Esther Linder and Christoph Mordasini assumed that Planet Nine's radius would be 3.66 times that of Earth's (23,300 km versus 6,378 km), and that its internal composition would be similar toOrigin
Several possible origins for Planet Nine have been examined, including its ejection from the neighborhood of the known giant planets, capture from another star, and '' in situ'' formation. In their initial article, Batygin and Brown proposed that Planet Nine formed closer to the Sun and was ejected into a distant eccentric orbit following a close encounter withEvidence
The gravitational influence of Planet Nine would explain four peculiarities of the Solar System: * the clustering of the orbits of ETNOs; * the high perihelia of objects like Sedna that areObservations: Orbital clustering of high perihelion objects
Simulations: Observed clustering reproduced
The clustering of the orbits of ETNOs and raising of their perihelia is reproduced in simulations that include Planet Nine. In simulations conducted by Batygin and Brown, swarms of scattered disk objects with semi-major axes up to 550 AU that began with random orientations were sculpted into roughlyDynamics: How Planet Nine modifies the orbits of ETNOs
Objects in perpendicular orbits with large semi-major axis
Orbits of high-inclination objects
A population of high-inclination TNOs with semi-major axes less than 100 AU may be generated by the combined effects of Planet Nine and the other giant planets. The ETNOs that enter perpendicular orbits have perihelia low enough for their orbits to intersect those of Neptune or the other giant planets. An encounter with one of these planets can lower an ETNO's semi-major axis to below 100 AU, where the object's orbits is no longer controlled by Planet Nine, leaving it in an orbit like . The predicted orbital distribution of the longest lived of these objects is nonuniform. Most would have orbits with perihelia ranging from 5 AU to 35 AU and inclinations below 110°; beyond a gap with few objects are would be others with inclinations near 150° and perihelia near 10 AU. Previously it was proposed that these objects originated in the Oort cloud, a theoretical cloud of icy planetesimals surrounding the Sun at distances of 2,000 to 200,000 AU. In simulations without Planet Nine an insufficient number are produced from the Oort cloud relative to observations, however. A few of the high-inclination TNOs may become retrograde Jupiter Trojans.Oort cloud and comets
Planet Nine would alter the source regions and the inclination distribution of comets. In simulations of the migration of the giant planets described by the Nice model fewer objects are captured in the Oort cloud when Planet Nine is included. Other objects would be captured in a cloud of objects dynamically controlled by Planet Nine. This Planet Nine cloud, made up of the ETNOs and the perpendicular objects, would extend from semi-major axes of and contain roughly . When the perihelia of objects in the Planet Nine cloud drop low enough for them to encounter the other planets some would be scattered into orbits that enter the inner Solar System where they could be observed as comets. If Planet Nine exists these would make up roughly one third of the Halley-type comets. Interactions with Planet Nine would also increase the inclinations of the scattered disk objects that cross its orbit. This could result in more with moderate inclinations of 15–30° than are observed. The inclinations of the Jupiter-family comets derived from that population would also have a broader inclination distribution than is observed. Recent estimates of a smaller mass and eccentricity for Planet Nine would reduce its effect on these inclinations.2019 estimate
In February 2019, the total of ETNOs that fit the original hypothesis of having semi-major axis of over 250 AU had increased to fourteen objects. The orbit parameters for Planet Nine favored by Batygin and Brown after an analysis using these objects were: * semi-major axis of 400–500 AU; * orbital eccentricity of 0.15–0.3; * orbital inclination around 20°; * mass of about .2021 estimate
In August 2021, Batygin and Brown reanalyzed the data related to ETNO observations while accounting for observational biases, they found that observations were more likely in some directions than others. They stated that the orbital clustering observed "remains significant at a 99.6% confidence level". Combining observational biases with numerical simulations, they predicted the characteristics of Planet Nine: * semi-major axis of (300–520 AU); * perihelion of (240–385 AU); * orbital inclination of (11°–21°); * mass of 6.2 Earth massesReception
Batygin was cautious in interpreting the results of the simulation developed for his and Brown's research article, saying, "Until Planet Nine is caught on camera it does not count as being real. All we have now is an echo." In 2016, Brown put the odds for the existence of Planet Nine at about 90%. Greg Laughlin, one of the few researchers who knew in advance about this article, gives an estimate of 68.3%. Other skeptical scientists demand more data in terms of additional KBOs to be analyzed or final evidence through photographic confirmation. Brown, though conceding the skeptics' point, still thinks that there is enough data to mount a search for a new planet. The Planet Nine hypothesis is supported by several astronomers and academics. In January 2016 Jim Green, director of NASA's Science Mission Directorate, said, "the evidence is stronger now than it's been before". But Green also cautioned about the possibility of other explanations for the observed motion of distant ETNOs and, quotingAlternative hypotheses
Missing planet from Nice model
Planet Nine has been proposed as a potential remnant of the early Solar System's evolution. According to the Five-planet Nice model, the early Solar System contained five giant planets: Jupiter, Saturn, Uranus, Neptune, and a fifth, now-missing ice giant. Simulations of the Nice model suggest that gravitational interactions among these planets, coupled with interactions with a disk of planetesimals, led to the ejection of the fifth giant from the Solar System approximately 4 billion years ago. Some researchers propose that Planet Nine could be this fifth giant, lingering in a distant, eccentric orbit far beyond Neptune instead of being entirely ejected from the Solar System. This hypothesis aligns with observations suggesting Planet Nine's orbit would be stable over the Solar System's lifetime, supporting its survival as an outer-system object. The hypothesis that Planet Nine may be the fifth giant is bolstered by its proposed mass and orbital characteristics, which are consistent with those of an ice giant. Numerical simulations of the Nice model show that the ejection of the fifth giant often leaves a gravitational signature in the form of altered orbits for the remaining planets and small bodies. The observed clustering of certain trans-Neptunian objects (TNOs) has been cited as indirect evidence of Planet Nine's gravitational influence, possibly originating from its early interactions with the outer Solar System.Temporary or coincidental clustering
The results of the Outer Solar System Survey (OSSOS) suggest that the observed clustering is the result of a combination of observational bias and small number statistics. OSSOS, a well-characterized survey of the outer Solar System with known biases, observed eight objects with semi-major axis with orbits oriented in a wide range of directions. After accounting for the observational biases of the survey, no evidence for the arguments of perihelion () clustering identified by Trujillo and Sheppard was seen, and the orientation of the orbits of the objects with the largest semi-major axis was statistically consistent with being random. Pedro Bernardinelli and his colleagues also found that the orbital elements of the ETNOs found by the Dark Energy Survey showed no evidence of clustering. However, they also noted that the sky coverage and number of objects found were insufficient to show that there was no Planet Nine. A similar result was found when these two surveys were combined with a survey by Trujillo and Sheppard. These results differed from an analysis of discovery biases in the previously observed ETNOs by Mike Brown. He found that after observation biases were accounted for, the clustering of longitudes of perihelion of 10 known ETNOs would be observed only 1.2% of the time if their actual distribution was uniform. When combined with the odds of the observed clustering of the arguments of perihelion, the probability was 0.025%. A later analysis of the discovery biases of fourteen ETNOs used by Brown and Batygin determined the probability of the observed clustering of the longitudes of perihelion and the orbital pole locations to be 0.2% . Simulations of 15 known objects evolving under the influence of Planet Nine also revealed differences from observations. Cory Shankman and his colleagues included Planet Nine in a simulation of many clones (objects with similar orbits) of 15 objects with semi-major axis and perihelion While they observed alignment of the orbits opposite that of Planet Nine's for the objects with semi-major axis greater than 250 AU, clustering of the arguments of perihelion was not seen. Their simulations also showed that the perihelia of the ETNOs rose and fell smoothly, leaving many with perihelion distances between 50 and 70 AU where none had been observed, and predicted that there would be many other unobserved objects. These included a large reservoir of high-inclination objects that would have been missed due to most observations being at small inclinations, and a large population of objects with perihelia so distant that they would be too faint to observe. Many of the objects were also ejected from the Solar System after encountering the other giant planets. The large unobserved populations and the loss of many objects led Shankman ''et al''. to estimate that the mass of the original population was tens of Earth masses, requiring that a much larger mass had been ejected during the early Solar System. Shankman ''et al''. concluded that the existence of Planet Nine is unlikely and that the currently observed alignment of the existing ETNOs is a temporary phenomenon that will disappear as more objects are detected.Inclination instability in a massive disk
Ann-Marie Madigan and Michael McCourt postulate that an inclination instability in a distant massive belt hypothetically termed a Zderic-Madigan, or ZM belt is responsible for the alignment of the arguments of perihelion of the ETNOs. An inclination instability could occur in such a disk of particles with high eccentricity orbits around a central body, such as the Sun. The self-gravity of this disk would cause its spontaneous organization, increasing the inclinations of the objects and aligning the arguments of perihelion, forming it into a cone above or below the original plane. This process would require an extended time and significant mass of the disk, on the order of a billion years for a 1–10 Earth-mass disk. Ann-Marie Madigan argues that some already discovered trans-neptunian objects like Sedna and 2012 VP113 may be members of this disk. If this is the case there would likely be thousands of similar objects in the region. Mike Brown considers Planet Nine a more probable explanation, noting that current surveys have not revealed a large enough scattered-disk to produce an "inclination instability". In Nice model simulations of the Solar System that included the self-gravity of the planetesimal disk an inclination instability did not occur. Instead, the simulation produced a rapid precession of the objects' orbits and most of the objects were ejected on too short of a timescale for an inclination instability to occur. Madigan and colleagues have shown that the inclination instability would require 20 Earth masses in a disk of objects with semi-major axes of a few hundred AU. An inclination instability in this disk could also reproduce the observed gap in the perihelion distances of the extreme TNOs, and the observed apsidal alignment following the inclination instability given sufficient time. Simulations show that the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) project should be able to supply strong evidence for or against the ZM belt.Shepherding by a massive disk
Antranik Sefilian and Jihad Touma propose that a massive disk of moderately eccentric TNOs is responsible for the clustering of the longitudes of perihelion of the ETNOs. This disk would contain 10 Earth-mass of TNOs with aligned orbits and eccentricities that increased with their semi-major axes ranging from zero to 0.165. The gravitational effects of the disk would offset the forward precession driven by the giant planets so that the orbital orientations of its individual objects are maintained. The orbits of objects with high eccentricities, such as the observed ETNOs, would be stable and have roughly fixed orientations, or longitudes of perihelion, if their orbits were anti-aligned with this disk. Although Brown thinks the proposed disk could explain the observed clustering of the ETNOs, he finds it implausible that the disk could survive over the age of the Solar System. Batygin thinks that there is insufficient mass in the Kuiper belt to explain the formation of the disk, and asks "why would the protoplanetary disk end near 30 AU and restart beyond 100 AU?"Planet in lower eccentricity orbit
The Planet Nine hypothesis includes a set of predictions about the mass and orbit of the planet. An alternative hypothesis predicts a planet with different orbital parameters. Renu Malhotra, Kathryn Volk, and Xianyu Wang have proposed that the four detached objects with the longest orbital periods, those with perihelia beyond and semi-major axes greater than , are in ''n'':1 or ''n'':2 mean-motion resonances with a hypothetical planet. Two other objects with semi-major axes greater than are also potentially in resonance with this planet. Their proposed planet could be on a lower eccentricity, low inclination orbit, with eccentricity ''e'' < 0.18 and inclination ''i'' ≈ 11°. The eccentricity is limited in this case by the requirement that close approaches of to the planet be avoided. If the ETNOs are in periodic orbits of the third kind, with their stability enhanced by the libration of their arguments of perihelion, the planet could be in a higher inclination orbit, with ''i'' ≈ 48°. Unlike Batygin and Brown, Malhotra, Volk and Wang do not specify that most of the distant detached objects would have orbits anti-aligned with the massive planet.Alignment due to the Kozai mechanism
Trujillo and Sheppard argued in 2014 that a massive planet in a circular orbit with an average distance between and was responsible for the clustering of the arguments of perihelion of twelve TNOs with large semi-major axes. Trujillo and Sheppard identified a clustering near zero degrees of the arguments of perihelion of the orbits of twelve TNOs with perihelia greater than and semi-major axes greater than . After numerical simulations showed that the arguments of perihelion should circulate at varying rates, leaving them randomized after billions of years, they suggested that a massive planet in a circular orbit at a few hundred astronomical units was responsible for this clustering. This massive planet would cause the arguments of perihelion of the TNOs to librate about 0° or 180° via the Kozai mechanism so that their orbits crossed the plane of the planet's orbit near perihelion and aphelion, the closest and farthest points from the planet. In numerical simulations including a 2–15 Earth mass body in a circular low-inclination orbit between and the arguments of perihelia of Sedna and librated around 0° for billions of years (although the lower perihelion objects did not) and underwent periods of libration with a Neptune mass object in a high inclination orbit at 1,500 AU. Another process such as a passing star would be required to account for the absence of objects with arguments of perihelion near 180°. These simulations showed the basic idea of how a single large planet can shepherd the smaller TNOs into similar types of orbits. They were basic proof of concept simulations that did not obtain a unique orbit for the planet as they state there are many possible orbital configurations the planet could have. Thus they did not fully formulate a model that successfully incorporated all the clustering of the ETNOs with an orbit for the planet. But they were the first to notice there was a clustering in the orbits of TNOs and that the most likely reason was from an unknown massive distant planet. Their work is very similar to how Alexis Bouvard noticed Uranus' motion was peculiar and suggested that it was likely gravitational forces from an unknown 8th planet, which led to the discovery of Neptune. Raúl and Carlos de la Fuente Marcos proposed a similar model but with two distant planets in resonance. An analysis by Carlos and Raúl de la Fuente Marcos with Sverre J. Aarseth confirmed that the observed alignment of the arguments of perihelion could not be due to observational bias. They speculated that instead it was caused by an object with a mass between that of Mars and Saturn that orbited at some from the Sun. Like Trujillo and Sheppard they theorized that the TNOs are kept bunched together by a Kozai mechanism and compared their behavior to that of Comet 96P/Machholz under the influence ofPrimordial black hole
In 2019, Jakub Scholtz and James Unwin proposed that a primordial black hole was responsible for the clustering of the orbits of the ETNOs. Their analysis of OGLE gravitational lensing data revealed a population of planetary mass objects in the direction of the galactic bulge more numerous than the local population of stars. They propose that instead of being free floating planets, these objects are primordial black holes. Since their estimate of the size of this population is greater than the estimated population of free floating planets from planetary formation models they argue that the capture of a hypothetical primordial black hole would be more probable than the capture of a free floating planet. This could also explain why an object responsible for perturbing the orbits of the ETNOs, if it exists, has yet to be seen. A detection method was proposed in the paper, stating that the black hole is too cold to be detected over the CMB, but interaction with surroundingModified Newtonian dynamics
In 2023, it was shown that a gravity theory known as modified Newtonian dynamics (MOND), which attempts to explain galactic rotation without invokingDetection attempts
Visibility and location
Due to its extreme distance from the Sun, Planet Nine would reflect little sunlight, potentially evading telescope sightings. It is expected to have anSearches of existing data
The search of databases of stellar objects by Batygin and Brown has already excluded much of the sky along Planet Nine's predicted orbit. The remaining regions include the direction of its aphelion, where it would be too faint to be spotted by these surveys, and near the plane of theOngoing searches
Because the planet is predicted to be visible in theRadiation
Although a distant planet such as Planet Nine would reflect little light, due to its large mass it would still be radiating the heat from its formation as it cools. At its estimated temperature of , the peak of its emissions would be atCitizen science
The Zooniverse "Catalina Outer Solar System Survey" project, operating from August 2020 to April 2023, was using archived data from the Catalina Sky Survey to search for TNOs. No new objects were discovered, but the project led to additional astrometry for existing objects.Attempts to predict location
Measurements of Saturn's orbit by the ''Cassini'' probe
Precise observations of Saturn's orbit using data from ''Cassini'' suggest that Planet Nine could not be in certain sections of its proposed orbit because its gravity would cause a noticeable effect on Saturn's position. This data neither proves nor disproves that Planet Nine exists. An initial analysis by Fienga, Laskar, Manche, and Gastineau using Cassini data to search for Saturn's orbital residuals, small differences with its predicted orbit due to the Sun and the known planets, was inconsistent with Planet Nine being located with a true anomaly, the location along its orbit relative to perihelion, of −130° to −110° or −65° to 85°. The analysis, using Batygin and Brown's orbital parameters for Planet Nine, suggests that the lack of perturbations to Saturn's orbit is best explained if Planet Nine is located at a true anomaly of . At this location, Planet Nine would be approximately from the Sun, withAnalysis of Pluto's orbit
An analysis in 2016 of Pluto's orbit by Holman and Payne found perturbations much larger than predicted by Batygin and Brown's proposed orbit for Planet Nine. Holman and Payne suggested three possible explanations: systematic errors in the measurements of Pluto's orbit; an unmodeled mass in the Solar System, such as a small planet in the range of 60– (potentially explaining the Kuiper cliff); or a planet more massive or closer to the Sun instead of the planet predicted by Batygin and Brown.Orbits of nearly parabolic comets
An analysis of the orbits of comets with nearly parabolic orbits identifies five new comets with hyperbolic orbits that approach the nominal orbit of Planet Nine described in Batygin and Brown's initial article. If these orbits are hyperbolic due to close encounters with Planet Nine the analysis estimates that Planet Nine is currently near aphelion with a right ascension of 83–90° and a declination of 8–10°. Scott Sheppard, who is skeptical of this analysis, notes that many different forces influence the orbits of comets.Occultations by Jupiter trojans
Malena Rice and Gregory Laughlin have proposed that a network of telescopes be built to detect occultations by Jupiter trojans. The timing of these occultations would provide precise astrometry of these objects enabling their orbits to be monitored for variations due to the tide from Planet Nine.Possible encounter with interstellar meteor
In May 2022, it was suggested that the peculiar meteor CNEOS 2014-01-08 may have entered Earth-crossing orbit after a swing-by of Planet Nine. If that hypothesis is true, the trajectory back-tracing of CNEOS 2014-01-08 means Planet Nine may be currently located in the constellation of Aries, at right ascension 53°, and declination 9.2°.Attempts to predict the semi-major axis
An analysis by Sarah Millholland and Gregory Laughlin identified a pattern of commensurabilities (ratios between orbital periods of pairs of objects consistent with both being in resonance with another object) of the ETNOs. They identify five objects that would be near resonances with Planet Nine if it had a semi-major axis of 654 AU: Sedna (3:2), 474640 Alicanto (3:1), (4:1), (5:1), and (5:1). They identify this planet as Planet Nine but propose a different orbit with an eccentricity ''e'' ≈ 0.5, inclination ''i'' ≈ 30°, argument of perihelion ω ≈ 150°, and longitude of ascending node Ω ≈ 50° (the last differs from Brown and Batygin's value of 90°). Carlos and Raúl de la Fuente Marcos also note commensurabilities among the known ETNOs similar to that of the Kuiper belt, where accidental commensurabilities occur due to objects in resonances with Neptune. They find that some of these objects would be in 5:3 and 3:1 resonances with a planet that had a semi-major axis of ≈700 AU. Three objects with smaller semi-major axes near 172 AU (, and (594337) 2016 QU89) have also been proposed to be in resonance with Planet Nine. These objects would be in resonance and anti-aligned with Planet Nine if it had a semi-major axis of 315 AU, below the range proposed by Batygin and Brown. Alternatively, they could be in resonance with Planet Nine, but have orbital orientations that circulate instead of being confined by Planet Nine if it had a semi-major axis of 505 AU. A later analysis by Elizabeth Bailey, Michael Brown, and Konstantin Batygin found that if Planet Nine is in an eccentric and inclined orbit the capture of many of the ETNOs in higher-order resonances and their chaotic transfer between resonances prevent the identification of Planet Nine's semi-major axis using current observations. They also determined that the odds of the first six objects observed being in N/1 or N/2 period ratios with Planet Nine are less than 5% if it has an eccentric orbit. A 2025 study by Amir Siraj, Christopher F. Chyba, and Scott Tremaine using an expanded sample of 51 ETNOs to inform 300 simulations in the Rebound program, proposed new orbital characteristics for Planet Nine: that its semi-major axis is , its eccentricity is 0.29 ± 0.13, and its inclination is roughly 6°. The authors noted that it would put Planet Nine in the field of view of the Rubin Observatory's early observations. In late 2020 it was determined HD 106906 b, a candidate exoplanet, had an eccentric orbit that took it outside the debris disk of its binary host stars. Its orbit appears to be similar to the predictions made for Planet Nine's semi-major axis and it may serve as a proxy for Planet Nine that helps explain how such planetary orbits evolve, although this exoplanet is well over ten times as massive as Jupiter.Naming
Planet Nine does not have an official name and will not receive one unless its existence is confirmed via imaging. Only two planets, Uranus and Neptune, have been discovered in the Solar System during recorded history. However, manySee also
* Hypothetical planets of the Solar System * Nemesis (hypothetical star) * Planets beyond Neptune * Tyche (hypothetical planet) * Five-planet Nice model *Notes
References
External links
*