Planar Region
   HOME

TheInfoList



OR:

In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
, a plane is a flat two-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
that extends indefinitely.
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
s often arise as subspaces of
three-dimensional space In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ('' coordinates'') are required to determine the position of a point. Most commonly, it is the three- ...
\mathbb^3. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimally thin. While a pair of real numbers \mathbb^2 suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
in the
ambient space In mathematics, especially in geometry and topology, an ambient space is the space surrounding a mathematical object along with the object itself. For example, a 1-dimensional line (l) may be studied in isolation —in which case the ambient ...
\mathbb^3.


Derived concepts

A or (or simply "plane", in lay use) is a planar surface
region In geography, regions, otherwise referred to as areas, zones, lands or territories, are portions of the Earth's surface that are broadly divided by physical characteristics (physical geography), human impact characteristics (human geography), and ...
; it is analogous to a
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
. A ''
bivector In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of ...
'' is an
oriented In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is ori ...
plane segment, analogous to
directed line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct endpoints (its extreme points), and contains every point on the line that is between its endpoints. It is a special case of an '' arc'', with zero curvatu ...
s. A ''
face The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect th ...
'' is a plane segment bounding a
solid object Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space). A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its inte ...
. A ''
slab Slab or SLAB may refer to: Physical materials * Concrete slab, a flat concrete plate used in construction * Stone slab, a flat stone used in construction * Slab (casting), a length of metal * Slab (geology), that portion of a tectonic plate that ...
'' is a region bounded by two parallel planes. A ''
parallelepiped In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. Three equiva ...
'' is a region bounded by three pairs of parallel planes.


Background

Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
set forth the first great landmark of mathematical thought, an axiomatic treatment of geometry. He selected a small core of undefined terms (called ''common notions'') and postulates (or
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s) which he then used to prove various geometrical statements. Although the plane in its modern sense is not directly given a definition anywhere in the '' Elements'', it may be thought of as part of the common notions. Euclid never used numbers to measure length, angle, or area. The Euclidean plane equipped with a chosen
Cartesian coordinate system In geometry, a Cartesian coordinate system (, ) in a plane (geometry), plane is a coordinate system that specifies each point (geometry), point uniquely by a pair of real numbers called ''coordinates'', which are the positive and negative number ...
is called a ''Cartesian plane''; a non-Cartesian Euclidean plane equipped with a
polar coordinate system In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are *the point's distance from a reference point called the ''pole'', and *the point's direction from ...
would be called a ''polar plane''. A plane is a
ruled surface In geometry, a Differential geometry of surfaces, surface in 3-dimensional Euclidean space is ruled (also called a scroll) if through every Point (geometry), point of , there is a straight line that lies on . Examples include the plane (mathemat ...
.


Euclidean plane


Representation

This section is solely concerned with planes embedded in three dimensions: specifically, in .


Determination by contained points and lines

In a Euclidean space of any number of dimensions, a plane is uniquely determined by any of the following: * Three non-
collinear In geometry, collinearity of a set of Point (geometry), points is the property of their lying on a single Line (geometry), line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, t ...
points (points not on a single line). * A line and a point not on that line. * Two distinct but intersecting lines. * Two distinct but
parallel Parallel may refer to: Mathematics * Parallel (geometry), two lines in the Euclidean plane which never intersect * Parallel (operator), mathematical operation named after the composition of electrical resistance in parallel circuits Science a ...
lines.


Properties

The following statements hold in three-dimensional Euclidean space but not in higher dimensions, though they have higher-dimensional analogues: * Two distinct planes are either parallel or they intersect in a line. * A line is either parallel to a plane, intersects it at a single point, or is contained in the plane. * Two distinct lines
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
to the same plane must be parallel to each other. * Two distinct planes perpendicular to the same line must be parallel to each other.


Point–normal form and general form of the equation of a plane

In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the
normal vector In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the infinite straight line perpendicular to the tangent line to the cu ...
) to indicate its "inclination". Specifically, let be the position vector of some point , and let be a nonzero vector. The plane determined by the point and the vector consists of those points , with position vector , such that the vector drawn from to is perpendicular to . Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points such that \boldsymbol \cdot (\boldsymbol-\boldsymbol_0)=0. The dot here means a dot (scalar) product.
Expanded this becomes a (x-x_0) + b(y-y_0) + c(z-z_0) = 0, which is the ''point–normal'' form of the equation of a plane. This is just a
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
ax + by + cz + d = 0, where d = -(ax_0 + by_0 + cz_0), which is the expanded form of - \boldsymbol \cdot \boldsymbol_0. In mathematics it is a common convention to express the normal as a
unit vector In mathematics, a unit vector in a normed vector space is a Vector (mathematics and physics), vector (often a vector (geometry), spatial vector) of Norm (mathematics), length 1. A unit vector is often denoted by a lowercase letter with a circumfle ...
, but the above argument holds for a normal vector of any non-zero length. Conversely, it is easily shown that if , , , and are constants and , , and are not all zero, then the graph of the equation ax + by + cz + d = 0, is a plane having the vector as a normal. This familiar equation for a plane is called the ''general form'' of the equation of the plane or just the ''plane equation''. Thus for example a regression equation of the form (with ) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.


Describing a plane with a point and two vectors lying on it

Alternatively, a plane may be described parametrically as the set of all points of the form \boldsymbol = \boldsymbol_0 + s \boldsymbol + t \boldsymbol, where and range over all real numbers, and are given
linearly independent In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
vectors defining the plane, and is the vector representing the position of an arbitrary (but fixed) point on the plane. The vectors and can be visualized as vectors starting at and pointing in different directions along the plane. The vectors and can be
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
, but cannot be parallel.


Describing a plane through three points

Let , , and be non-collinear points.


Method 1

The plane passing through , , and can be described as the set of all points (''x'',''y'',''z'') that satisfy the following
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
equations: \begin x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end = \begin x - x_1 & y - y_1 & z - z_1 \\ x - x_2 & y - y_2 & z - z_2 \\ x - x_3 & y - y_3 & z - z_3 \end = 0.


Method 2

To describe the plane by an equation of the form ax + by + cz + d = 0 , solve the following system of equations: ax_1 + by_1 + cz_1 + d = 0 ax_2 + by_2 + cz_2 + d = 0 ax_3 + by_3 + cz_3 + d = 0. This system can be solved using
Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of ...
and basic matrix manipulations. Let D = \begin x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end. If is non-zero (so for planes not through the origin) the values for , and can be calculated as follows: a = \frac \begin 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end b = \frac \begin x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end c = \frac \begin x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end. These equations are parametric in ''d''. Setting ''d'' equal to any non-zero number and substituting it into these equations will yield one solution set.


Method 3

This plane can also be described by the prescription above. A suitable normal vector is given by the
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
\boldsymbol n = ( \boldsymbol p_2 - \boldsymbol p_1 ) \times ( \boldsymbol p_3 - \boldsymbol p_1 ), and the point can be taken to be any of the given points , or (or any other point in the plane).


Operations


Distance from a point to a plane


Line–plane intersection


Line of intersection between two planes


Sphere–plane intersection


Occurrence in nature

A plane serves as a mathematical model for many physical phenomena, such as
specular reflection Specular reflection, or regular reflection, is the mirror-like reflection (physics), reflection of waves, such as light, from a surface. The law of reflection states that a reflected ray (optics), ray of light emerges from the reflecting surf ...
in a
plane mirror A plane mirror is a mirror with a flat ( planar) reflective surface. For light rays striking a plane mirror, the angle of reflection equals the angle of incidence. The angle of the incidence is the angle between the incident ray and the surfac ...
or
wavefront In physics, the wavefront of a time-varying ''wave field (physics), field'' is the set (locus (mathematics), locus) of all point (geometry), points having the same ''phase (waves), phase''. The term is generally meaningful only for fields that, a ...
s in a traveling plane wave. The
free surface In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids. An example of two such homogeneous fluids would be a body of water (liquid) and the air in ...
of undisturbed liquids tends to be nearly flat (see flatness). The flattest surface ever manufactured is a quantum-stabilized atom mirror. In astronomy, various ''
reference plane In celestial mechanics, the orbital plane of reference (or orbital reference plane) is the plane used to define orbital elements (positions). The two main orbital elements that are measured with respect to the plane of reference are the incli ...
s'' are used to define positions in orbit. ''
Anatomical plane An anatomical plane is a hypothetical plane used to transect the body, in order to describe the location of structures or the direction of movements. In human anatomy and non-human anatomy, four principal planes are used: the median plane, ...
s'' may be lateral ("sagittal"), frontal ("coronal") or transversal. In geology, ''
beds A bed is a piece of furniture that is used as a place to sleep, rest, and relax. Most modern beds consist of a soft, cushioned mattress on a bed frame. The mattress rests either on a solid base, often wood slats, or a sprung base. Many be ...
'' (layers of sediments) often are planar. Planes are involved in different forms of
imaging Imaging is the representation or reproduction of an object's form; especially a visual representation (i.e., the formation of an image). Imaging technology is the application of materials and methods to create, preserve, or duplicate images. ...
, such as the ''
focal plane In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the '' focal points'', the principal points, and the nodal points; there are two ...
'', ''
picture plane In painting, photography, graphical perspective and descriptive geometry, a picture plane is an image plane located between the "eye point" (or '' oculus'') and the object being viewed and is usually coextensive to the material surface of the w ...
'', and ''
image plane In 3D computer graphics, the image plane is that plane in the world which is identified with the plane of the display monitor used to view the image that is being rendered. It is also referred to as screen space. If one makes the analogy of taki ...
''.


Miller indices

The attitude of a
lattice plane In crystallography, a lattice plane of a given Bravais lattice is any plane containing at least three noncollinear Bravais lattice points. Equivalently, a lattice plane is a plane whose intersections with the lattice (or any crystalline structure o ...
is the orientation of the line normal to the plane, and is described by the plane's
Miller indices Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices. In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers ''h'', ''k'', and ''� ...
. In three-space a family of planes (a series of parallel planes) can be denoted by its
Miller indices Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices. In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers ''h'', ''k'', and ''� ...
(''hkl''), so the family of planes has an attitude common to all its constituent planes.


Strike and dip

Many features observed in geology are planes or lines, and their orientation is commonly referred to as their ''attitude''. These attitudes are specified with two angles. For a line, these angles are called the ''trend'' and the ''plunge''. The trend is the compass direction of the line, and the plunge is the downward angle it makes with a horizontal plane. For a plane, the two angles are called its ''strike (angle)'' and its ''dip (angle)''. A ''strike line'' is the intersection of a horizontal plane with the observed planar feature (and therefore a horizontal line), and the strike angle is the ''bearing'' of this line (that is, relative to geographic north or from
magnetic north The north magnetic pole, also known as the magnetic north pole, is a point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downward (in other words, if a magnetic compass needle is allowed t ...
). The dip is the angle between a horizontal plane and the observed planar feature as observed in a third vertical plane perpendicular to the strike line.


See also

* Dihedral angle *
Flat (geometry) In geometry, a flat is an affine subspace, i.e. a subset of an affine space that is itself an affine space. Particularly, in the case the parent space is Euclidean, a flat is a Euclidean subspace which inherits the notion of distance from it ...
*
Half-plane In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example ...
*
Hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
* Plane coordinates *
Plane of incidence In describing reflection and refraction in optics, the plane of incidence (also called the incidence plane or the meridional plane) is the plane which contains the surface normal and the propagation vector of the incoming radiation. (In wave o ...
*
Plane of rotation In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can ...
* Plane orientation *
Polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...


Notes


Explanatory notes


Citations


References

* * *


External links

* *
"Easing the Difficulty of Arithmetic and Planar Geometry"
is an Arabic manuscript, from the 15th century, that serves as a tutorial about plane geometry and arithmetic. {{DEFAULTSORT:Plane (Geometry) *