In
mathematics, a Picard modular group, studied by , is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
of the form SU(''J'',''L''), where ''L'' is a 3-dimensional
lattice over the
ring of integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often d ...
of an
imaginary quadratic field and ''J'' is a
hermitian form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows ...
on ''L'' of signature (2, 1). Picard modular groups
act on the
unit sphere
In mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A u ...
in C
2 and the quotient is called a
Picard modular surface In mathematics, a Picard modular surface, studied by , is a complex surface constructed as a quotient of the unit ball in C2 by a Picard modular group.
Picard modular surfaces are some of the simplest examples of Shimura varieties and are sometime ...
.
See also
*
Fuchsian group
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations ...
*
Kleinian group
In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space . The latter, identifiable with , is the quotient group of the 2 by 2 complex matrices of determinant 1 by thei ...
References
*
*{{Citation , last1=Picard , first1=Émile , authorlink=Émile Picard, title= Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques , url= http://www.numdam.org/item?id=ASENS_1881_2_10__305_0 , year=1881 , journal=Annales Scientifiques de l'École Normale Supérieure , series=Série 2 , volume=10 , pages=305–322
Group theory
Automorphic forms