HOME

TheInfoList



OR:

Phytoglycogen is a type of
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. The polysaccharide structure represents the main storage form of glucose in the body. Glycogen functions as one o ...
extracted from plants. It is a highly branched, water-soluble
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with ...
derived from
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, usi ...
. Phytoglycogen is a highly branched polysaccharide used to store glucose in a similar way that glycogen is the glucose storage for animals. It is made up of branched, flexible chains on glucose molecules that grow similarly to synthetic dendrimers. The special structure of the phytoglycogen allows it to have low
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
, high water retention, as well as high stability in water, and stabilize bioactive compounds and form films on surfaces. Thus, this monodisperse
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
is able to be used in many different technologies.Xue, Jingyi & Luo, Yangchao. (2020). Properties and applications of natural dendritic nanostructures: Phytoglycogen and its derivatives. Trends in Food Science & Technology. 107. 10.1016/j.tifs.2020.11.013.


References

Polysaccharides {{biochem-stub