HOME

TheInfoList



OR:

Photostimulation is the use of
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
to artificially activate biological compounds,
cells Cell most often refers to: * Cell (biology), the functional basic unit of life * Cellphone, a phone connected to a cellular network * Clandestine cell, a penetration-resistant form of a secret or outlawed organization * Electrochemical cell, a d ...
, tissues, or even whole
organisms An organism is any living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have been pr ...
. Photostimulation can be used to noninvasively probe various relationships between different biological processes, using only light. In the long run, photostimulation has the potential for use in different types of therapy, such as
migraine headache Migraine (, ) is a complex neurological disorder characterized by episodes of moderate-to-severe headache, most often unilateral and generally associated with nausea, and light and sound sensitivity. Other characterizing symptoms may includ ...
. Additionally, photostimulation may be used for the mapping of neuronal connections between different areas of the brain by “uncaging” signaling biomolecules with light.
Therapy A therapy or medical treatment is the attempted remediation of a health problem, usually following a medical diagnosis. Both words, ''treatment'' and ''therapy'', are often abbreviated tx, Tx, or Tx. As a rule, each therapy has indications a ...
with photostimulation has been called
light therapy Light therapy, also called phototherapy or bright light therapy is the exposure to direct sunlight or artificial light at controlled wavelengths in order to treat a variety of medical disorders, including seasonal affective disorder (SAD), circ ...
, phototherapy, or photobiomodulation. Photostimulation methods fall into two general categories: one set of methods uses light to uncage a compound that then becomes biochemically active, binding to a downstream effector. For example, uncaging
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
is useful for finding excitatory connections between neurons, since the uncaged glutamate mimics the natural synaptic activity of one neuron impinging upon another. The other major photostimulation method is the use of light to activate a light-sensitive protein such as
rhodopsin Rhodopsin, also known as visual purple, is a protein encoded by the ''RHO'' gene and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rod cells. Rhodopsin mediates dim ...
, which can then excite the cell expressing the opsin. Scientists have long postulated the need to control one type of cell while leaving those surrounding it untouched and unstimulated. Well-known scientific advancements such as the use of electrical stimuli and electrodes have succeeded in neural activation but fail to achieve the aforementioned goal because of their imprecision and inability to distinguish between different cell types. The use of optogenetics (artificial cell activation via the use of light stimuli) is unique in its ability to deliver light pulses in a precise and timely fashion. Optogenetics is somewhat bidirectional in its ability to control neurons. Channels can be either depolarized or hyperpolarized depending on the wavelength of light that targets them. For instance, the technique can be applied to channelrhodopsin cation channels to initiate neuronal depolarization and eventually activation upon illumination. Conversely, activity inhibition of a neuron can be triggered via the use of optogenetics as in the case of the chloride pump halorhodopsin which functions to hyperpolarize neurons. Before optogenetics can be performed, however, the subject at hand must express the targeted channels. Natural and abundant in microbials, rhodopsins—including bacteriorhodopsin, halorhodopsin and channelrhodopsin—each have a different characteristic action spectrum which describes the set of colors and wavelengths that they respond to and are driven to function by. It has been shown that
channelrhodopsin-2 Channelrhodopsins are a subfamily of retinylidene proteins (rhodopsins) that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis: movement in response to light. Expressed ...
, a monolithic protein containing a light sensor and a cation channel, provides electrical stimulation of appropriate speed and magnitude to activate neuronal spike firing. Recently,
photoinhibition Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as ...
, the inhibition of neural activity with light, has become feasible with the application of molecules such as the light-activated chloride pump
halorhodopsin Halorhodopsin is a seven-transmembrane retinylidene protein from microbial rhodopsin family. It is a chloride-specific light-activated ion pump found in archaea known as halobacteria. It is activated by green light wavelengths of approximatel ...
to neural control. Together, blue-light activated
channelrhodopsin-2 Channelrhodopsins are a subfamily of retinylidene proteins (rhodopsins) that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis: movement in response to light. Expressed ...
and the yellow light-activated chloride pump
halorhodopsin Halorhodopsin is a seven-transmembrane retinylidene protein from microbial rhodopsin family. It is a chloride-specific light-activated ion pump found in archaea known as halobacteria. It is activated by green light wavelengths of approximatel ...
enable multiple-color, optical activation and silencing of neural activity. (See also
Photobiomodulation Low-level laser therapy (LLLT), cold laser therapy or photobiomodulation (PBM) is a medical treatment approach that applies low-level (low- power) lasers or light-emitting diodes (LEDs) to the surface of the body. Whereas high-power lasers are ...
)


Methods

A caged
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
is a protein that is activated in the presence of a stimulating light source. In most cases, photo-uncaging is the technique revealing the active region of a compound by the process of
photolysis Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons wi ...
of the shielding molecule (‘cage’). However, uncaging the protein requires an appropriate wavelength, intensity, and timing of the
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
. Achieving this is possible due to the fact that the
optical fiber An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
may be modified to deliver specific amounts of light. In addition, short bursts of stimulation allow results similar to the physiological norm. The steps of photostimulation are time independent in that protein delivery and light activation can be done at different times. This is because the two steps are dependent on each other for activation of the protein. Some proteins are innately photosensitive and function in the presence of light. Proteins known as
opsins Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become retinylidene proteins, but are usually still called opsins regardless. Most pro ...
form the crux of the photosensitive proteins. These proteins are often found in the eye. In addition, many of these proteins function as
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
and
receptors Receptor may refer to: *Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds ...
. One example is when a certain wavelength of light is put onto certain channels, the blockage in the pore is relieved and allows ion transduction. To uncage molecules, a photolysis system is required to cleave the
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
. An example system can consist of a light source (generally a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
or a lamp), a controller for the amount of light that enters, a guide for the light, and a delivery system. Often, the design function in such a way that a medium is met between the diffusing light that may cause additional, unwanted photolysis and light attenuation; both being significant problems with a photolysis system.


History

The idea of photostimulation as a method of controlling biomolecule function was developed in the 1970s. Two researchers, Walther Stoeckenius and Dieter Oesterhelt discovered an ion pump known as
bacteriorhodopsin Bacteriorhodopsin (Bop) is a protein used by Archaea, most notably by Haloarchaea, a class of the Euryarchaeota. It acts as a proton pump; that is, it captures light energy and uses it to move protons across the membrane out of the cell. The res ...
which functions in the presence of light in 1971. In 1978, J.F. Hoffman invented the term “caging”. Unfortunately, this term caused some confusion among scientists due to the fact that the term is often used to describe a molecule which is trapped within another molecule. It could also be confused with the “caged effect” in the recombination of radicals. Therefore, some authors decided to use the term “light-activated” instead of “caging”. Both terms are currently in use. The first “caged molecule” synthesized by Hoffman et al. at Yale was the caged precursor to ATP derivative 1.


Applications

Photostimulation is notable for its temporal precision, which may be used to obtain an accurate starting time of activation of caged effectors. In conjunction with caged inhibitors, the role of biomolecules at specific timepoints in an organism's lifecycle may be studied. A caged inhibitor of
N-ethylmaleimide sensitive fusion protein ''N''-ethylmaleimide-sensitive factor, also known as NSF or ''N''-ethylmaleimide sensitive fusion proteins, is an enzyme which in humans is encoded by the ''NSF'' gene. Function NSF is a homohexameric AAA ATPase involved in membrane fusion. ...
(NSF), a key mediator of synaptic transmission, has been used to study the time dependency of NSF. Several other studies have effected
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
firing through use of caged neurotransmitters such as glutamate. Caged neurotransmitters, including photolable precursors of
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
,
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
,
serotonin Serotonin (), also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter with a wide range of functions in both the central nervous system (CNS) and also peripheral tissues. It is involved in mood, cognition, reward, learning, ...
, and
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
, are commercially available. Signaling during
mitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
has been studied using reporter molecules with a caged
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
, which is not phosphorylated if photolysis has not occurred. The advantage of this technique is that it provides a “snapshot” of
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
activity at specific timepoints rather than recording all activity since the reporter's introduction.
Calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
ions play an important signaling role, and controlling their release with caged channels has been extensively studied. Unfortunately, not all organisms produce or hold sufficient amounts of opsins. Thus, the opsin gene must be introduced to target neurons if they are not already present in the organism of study. The addition and expression of this gene is sufficient for the use of optogenetics. Possible means of achieving this include the construction of transgenic lines containing the gene or acute gene transfer to a specific area or region within an individual. These methods are known as germline transgenesis and somatic gene delivery, respectively. Optogenetics has shown significant promise in the treatment of a series of neurological disorders such as Parkinson's disease and epilepsy. Optogenetics has the potential to facilitate the manipulation and targeting of specific cell types or neural circuits, characteristics that are lacking in current brain stimulation techniques like DBS. At this point, the use of optogenetics in treating neural diseases has only been practically implemented in the field of neurobiology to reveal more about the mechanisms of specific disorders. Before the technique can be implemented to directly treat these disorders developments in other related fields such as gene therapy, opsin engineering, and optoelectronics must also make certain developments.


References

{{reflist, 35em


External links


Channelrhodopsin and halorhodopsin mediating photostimulation

Optogenetics Resource Center
Biochemistry methods Diagnostic neurology