Photometry (optics)
   HOME

TheInfoList



OR:

Photometry is a branch of
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
that deals with measuring
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
in terms of its perceived brightness to the
human eye The human eye is a sensory organ in the visual system that reacts to light, visible light allowing eyesight. Other functions include maintaining the circadian rhythm, and Balance (ability), keeping balance. The eye can be considered as a living ...
. It is concerned with quantifying the amount of light that is emitted, transmitted, or received by an object or a system. In modern photometry, the radiant power at each
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way. The weightings are standardized by the CIE and
ISO The International Organization for Standardization (ISO ; ; ) is an independent, non-governmental, international standard development organization composed of representatives from the national standards organizations of member countries. Me ...
. Photometry is distinct from
radiometry Radiometry is a set of techniques for measurement, measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power (physics), power in space, as opposed to phot ...
, which is the science of measurement of
radiant energy In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic radiation, electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calcul ...
(including light) in terms of absolute power.


Photometry and the eye

The
human eye The human eye is a sensory organ in the visual system that reacts to light, visible light allowing eyesight. Other functions include maintaining the circadian rhythm, and Balance (ability), keeping balance. The eye can be considered as a living ...
is not equally sensitive to all
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
s of visible light. Photometry attempts to account for this by weighting the measured power at each wavelength with a factor that represents how sensitive the eye is at that wavelength. The standardized model of the eye's response to light as a function of wavelength is given by the luminosity function. The eye has different responses as a function of wavelength when it is adapted to light conditions (
photopic vision Photopic vision is the vision of the eye under well-lit conditions (luminance levels from 10 to 108  cd/m2). In humans and many other animals, photopic vision allows color perception, mediated by cone cells, and a significantly higher vis ...
) and dark conditions ( scotopic vision). Photometry is typically based on the eye's photopic response, and so photometric measurements may not accurately indicate the perceived brightness of sources in dim lighting conditions where colors are not discernible, such as under just moonlight or starlight. Photopic vision is characteristic of the eye's response at luminance levels over three candela per square metre. Scotopic vision occurs below 2 × 10−5 cd/m2.
Mesopic vision Mesopic vision, sometimes also called twilight vision, is a combination of photopic and scotopic vision under low-light (but not necessarily dark) conditions. Mesopic levels range approximately from 0.01 to 3.0  cd/m2 in luminance. Most ni ...
occurs between these limits and is not well characterised for spectral response.


Photometric quantities

Measurement of the effects of electromagnetic radiation became a field of study as early as the end of the 18th century. Measurement techniques varied depending on the effects under study and gave rise to different nomenclature. The total heating effect of
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation as measured by thermometers led to the development of radiometric units in terms of total energy and power. The use of the human eye as a detector led to photometric units, weighted by the eye's response characteristic. Study of the chemical effects of
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
radiation led to characterization by the total dose or actinometric units expressed in photons per second. Many different units of measure are used for photometric measurements. The adjective "bright" can refer to a light source which delivers a high luminous flux (measured in lumens), or to a light source which concentrates the luminous flux it has into a very narrow beam (candelas), or to a light source that is seen against a dark background. Because of how light propagates through three-dimensional space — spreading out, becoming concentrated, reflecting off shiny or matte surfaces — and because light consists of many different wavelengths, the number of fundamentally different kinds of light measurements that can be made is large, and so are the numbers of quantities and units that represent them. For example, offices are typically "brightly" illuminated by an array of many recessed fluorescent lights for a combined high luminous flux. A
laser pointer A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. Coherence (physics), coherent light) to highlight something of interest with a small brigh ...
has very low luminous flux (it could not illuminate a room) but is blindingly bright in one direction (high luminous intensity in that direction).


Photometric versus radiometric quantities

There are two parallel systems of quantities known as photometric and radiometric quantities. Every quantity in one system has an analogous quantity in the other system. Some examples of parallel quantities include: *
Luminance Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls wit ...
(photometric) and radiance (radiometric) * Luminous flux (photometric) and
radiant flux In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the ...
(radiometric) *
Luminous intensity In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the huma ...
(photometric) and radiant intensity (radiometric) In photometric quantities every wavelength is weighted according to how sensitive the human eye is to it, while radiometric quantities use unweighted absolute power. For example, the eye responds much more strongly to green light than to red, so a green source will have greater luminous flux than a red source with the same radiant flux would. Radiant energy outside the visible spectrum does not contribute to photometric quantities at all, so for example a 1000
watt The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), quantify the rate of Work ...
space heater may put out a great deal of radiant flux (1000 watts, in fact), but as a light source it puts out very few lumens (because most of the energy is in the infrared, leaving only a dim red glow in the visible).


Watts versus lumens

Watts are units of radiant flux while lumens are units of luminous flux. A comparison of the watt and the lumen illustrates the distinction between radiometric and photometric units. The watt is a unit of power. We are accustomed to thinking of light bulbs in terms of power in watts. This power is not a measure of the amount of light output, but rather indicates how much energy the bulb will use. Because incandescent bulbs sold for "general service" all have fairly similar characteristics (same spectral power distribution), power consumption provides a rough guide to the light output of incandescent bulbs. Watts can also be a direct measure of output. In a radiometric sense, an incandescent light bulb is about 80% efficient: 20% of the energy is lost (e.g. by conduction through the lamp base). The remainder is emitted as radiation, mostly in the
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
. Thus, a 60 watt light bulb emits a total radiant flux of about 45 watts. Incandescent bulbs are, in fact, sometimes used as heat sources (as in a chick incubator), but usually they are used for the purpose of providing light. As such, they are very inefficient, because most of the radiant energy they emit is invisible infrared. A
compact fluorescent lamp A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incan ...
can provide light comparable to a 60 watt incandescent while consuming as little as 15 watts of electricity. The lumen is the photometric unit of light output. Although most consumers still think of light in terms of power consumed by the bulb, in the U.S. it has been a trade requirement for several decades that light bulb packaging give the output in lumens. The package of a 60 watt incandescent bulb indicates that it provides about 900 lumens, as does the package of the 15 watt compact fluorescent. The lumen is defined as amount of light given into one
steradian The steradian (symbol: sr) or square radian is the unit of solid angle in the International System of Units (SI). It is used in three-dimensional geometry, and is analogous to the radian, which quantifies planar angles. A solid angle in the fo ...
by a point source of one candela strength; while the candela, a base SI unit, is defined as the luminous intensity of a source of monochromatic radiation, of frequency 540 terahertz, and a radiant intensity of 1/683 watts per steradian. (540 THz corresponds to about 555 nanometres, the wavelength, in the green, to which the human eye is most sensitive. The number 1/683 was chosen to make the candela about equal to the standard candle, the unit which it superseded). Combining these definitions, we see that 1/683 watt of 555 nanometre green light provides one lumen. The relation between watts and lumens is not just a simple scaling factor. We know this already, because the 60 watt incandescent bulb and the 15 watt compact fluorescent can both provide 900 lumens. The definition tells us that 1 watt of pure green 555 nm light is "worth" 683 lumens. It does not say anything about other wavelengths. Because lumens are photometric units, their relationship to watts depends on the wavelength according to how visible the wavelength is. Infrared and ultraviolet radiation, for example, are invisible and do not count. One watt of infrared radiation (which is where most of the radiation from an incandescent bulb falls) is worth zero lumens. Within the visible spectrum, wavelengths of light are weighted according to a function called the "photopic spectral luminous efficiency." According to this function, 700 nm red light is only about 0.4% as efficient as 555 nm green light. Thus, one watt of 700 nm red light is "worth" only 2.7 lumens. Because of the summation over the visual portion of the EM spectrum that is part of this weighting, the unit of "lumen" is color-blind: there is no way to tell what color a lumen will appear. This is equivalent to evaluating groceries by number of bags: there is no information about the specific content, just a number that refers to the total weighted quantity.


Photometric measurement techniques

Photometric measurement is based on
photodetector Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical ...
s, devices (of several types) that produce an electric signal when exposed to light. Simple applications of this technology include switching luminaires on and off based on ambient light conditions, and light meters, used to measure the total amount of light incident on a point. More complex forms of photometric measurement are used frequently within the lighting industry. Spherical photometers can be used to measure the directional luminous flux produced by lamps, and consist of a large-diameter globe with a lamp mounted at its center. A photocell rotates about the lamp in three axes, measuring the output of the lamp from all sides. Lamps and lighting fixtures are tested using goniophotometers and rotating mirror photometers, which keep the photocell stationary at a sufficient distance that the luminaire can be considered a point source. Rotating mirror photometers use a motorized system of mirrors to reflect light emanating from the luminaire in all directions to the distant photocell; goniophotometers use a rotating 2-axis table to change the orientation of the luminaire with respect to the photocell. In either case, luminous intensity is tabulated from this data and used in lighting design.


Non-SI photometry units


Luminance

* Footlambert * Millilambert * Stilb


Illuminance

* Foot-candle * Phot


See also

*
List of light sources This is a list of sources of light, the visible part of the electromagnetic spectrum. Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic ener ...
* Photometria *
Photometry (astronomy) In astronomy, photometry, from Greek '' photo-'' ("light") and '' -metry'' ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured t ...
*
Radiometer A radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the micro ...
*
Reflectivity The reflectance of the surface of a material is its effectiveness in Reflection (physics), reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the respon ...
*
Spectrometer A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
*
Spectrophotometry Spectrophotometry is a branch of electromagnetic spectroscopy concerned with the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength. Spectrophotometry uses photometers, known as spe ...
* Stereophotometry * Colorimetry


Notes


References


External links


Photometry
(nist.gov) (archived)

Professor Jim Palmer's Radiometry FAQ page (University of Arizona) (archived)

— Java executable JAR * {{DEFAULTSORT:Photometry (Optics) Lighting