Photocatalysis
   HOME

TheInfoList



OR:

In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each cycle of such interactions." In many cases, the catalyst is a solid that upon irradiation with UV- or visible light generates electron–hole pairs that generate
free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabolic disorders Metabolism ...
s. Photocatalysts belong to three main groups; heterogeneous, homogeneous, and plasmonic antenna-reactor catalysts. The use of each catalysts depends on the preferred application and required
catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
reaction.


History


Early mentions (1911–1938)

The earliest mention came in 1911, when German chemist Dr. Alexander Eibner integrated the concept in his research of the illumination of
zinc oxide Zinc oxide is an inorganic compound with the Chemical formula, formula . It is a white powder which is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, Zinc metabolism, food supplements, rubbe ...
(ZnO) on the bleaching of the dark blue pigment, Prussian blue. Around this time, Bruner and Kozak published an article discussing the deterioration of oxalic acid in the presence of uranyl salts under illumination, while in 1913, Landau published an article explaining the phenomenon of photocatalysis. Their contributions led to the development of actinometric measurements, measurements that provide the basis of determining photon flux in photochemical reactions. After a hiatus, in 1921, Baly et al. used ferric hydroxides and colloidal uranium salts as catalysts for the creation of formaldehyde under visible light. In 1938 Doodeve and Kitchener discovered that , a highly-stable and non-toxic oxide, in the presence of oxygen could act as a photosensitizer for bleaching dyes, as ultraviolet light absorbed by led to the production of active oxygen species on its surface, resulting in the blotching of organic chemicals via photooxidation. This was the first observation of the fundamental characteristics of heterogeneous photocatalysis.


1964–2024

Research in photocatalysis again paused until 1964, when V.N. Filimonov investigated
isopropanol Isopropyl alcohol (IUPAC name propan-2-ol and also called isopropanol or 2-propanol) is a colorless, flammable, organic compound with a pungent alcoholic odor. Isopropyl alcohol, an organic polar molecule, is miscible in water, ethanol, an ...
photooxidation from ZnO and ; while in 1965 Kato and Mashio, Doerffler and Hauffe, and Ikekawa et al. (1965) explored oxidation/photooxidation of and organic solvents from ZnO radiance. In 1970, Formenti et al. and Tanaka and Blyholde observed the oxidation of various
alkene In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or at the terminal position. Terminal alkenes are also known as Alpha-olefin, α-olefins. The Internationa ...
s and the photocatalytic decay of N2O, respectively. A breakthrough occurred in 1972, when Akira Fujishima and Kenichi Honda discovered that electrochemical photolysis of water occurred when a electrode irradiated with ultraviolet light was electrically connected to a
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
electrode. As the ultraviolet light was absorbed by the electrode, electrons flowed from the anode to the platinum cathode where
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
gas was produced. This was one of the first instances of
hydrogen production Hydrogen gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Article in press. Most hydrogen is ''gray hydrogen'' made through steam methane reforming. In this process, ...
from a clean and cost-effective source, as the majority of hydrogen production comes from natural gas reforming and gasification. Fujishima's and Honda's findings led to other advances. In 1977, Nozik discovered that the incorporation of a noble metal in the electrochemical photolysis process, such as platinum and
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
, among others, could increase photoactivity, and that an external potential was not required. Wagner and Somorjai (1980) and Sakata and Kawai (1981) delineated hydrogen production on the surface of strontium titanate (SrTiO3) via photogeneration, and the generation of hydrogen and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
from the illumination of and PtO2 in
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
, respectively. For many decades photocatalysis had not been developed for commercial purposes. However, in 2023 multiple patents were granted to a U.S. company, (Pure-Light Technologies, Inc.) that has developed various formulas and processes that allow for widespread commercialization for VOC reduction and germicidal action. Chu et al. (2017) assessed the future of electrochemical photolysis of water, discussing its major challenge of developing a cost-effective, energy-efficient photoelectrochemical (PEC) tandem cell, which would, “mimic natural photosynthesis".


Types of photocatalysis


Heterogeneous photocatalysis

In heterogeneous catalysis the
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
is in a different phase from the reactants. Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer, 18O216O2 and deuterium-alkane isotopic exchange, metal deposition, water detoxification, and gaseous pollutant removal. Most heterogeneous photocatalysts are transition metal oxides and
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s. Unlike metals, which have a continuum of electronic states, semiconductors possess a void energy region where no energy levels are available to promote recombination of an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
and
hole A hole is an opening in or through a particular medium, usually a solid Body (physics), body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in m ...
produced by photoactivation in the solid. The difference in energy between the filled valence band and the empty conduction band in the MO diagram of a semiconductor is the
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
. When the semiconductor absorbs a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
with energy equal to or greater than the material's
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
, an electron excites from the valence band to the conduction band, generating an
electron hole In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or crystal structure, atomic lattice. Since in ...
in the valence band. This electron-hole pair is an
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb's law, Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as ...
. The excited electron and hole can recombine and release the energy gained from the excitation of the electron as heat. Such exciton recombination is undesirable and higher levels cost efficiency. Efforts to develop functional photocatalysts often emphasize extending exciton lifetime, improving electron-hole separation using diverse approaches that may rely on structural features such as phase hetero-junctions (e.g.
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
-
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at vis ...
interfaces), noble-metal
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s,
silicon nanowire Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s and substitutional cation doping. The ultimate goal of photocatalyst design is to facilitate reactions of the excited electrons with oxidants to produce reduced products, and/or reactions of the generated holes with reductants to produce oxidized products. Due to the generation of positive holes (h+) and excited electrons (e), oxidation-reduction reactions take place at the surface of semiconductors irradiated with light. In one mechanism of the oxidative reaction, holes react with the moisture present on the surface and produce a hydroxyl radical. The reaction starts by photo-induced exciton generation in the metal oxide (MO) surface by photon (hv) absorption: :MO + hν → MO (h+ + e) Oxidative reactions due to photocatalytic effect: :h+ + H2O → H+ + •OH :2 h+ + 2 H2O → 2 H+ + H2O2 :H2O2→ 2 •OH Reductive reactions due to photocatalytic effect: :e + O2 → •O2 :•O2 + HO2• + H+ → H2O2 + O2 :H2O2 → 2 •OH Ultimately, both reactions generate hydroxyl radicals. These radicals are oxidative in nature and nonselective with a redox potential of ''E''0 = +3.06 V. This is significantly greater than many common organic compounds, which typically are not greater than ''E''0 = +2.00 V. This results in the non-selective oxidative behavior of these radicals. , a wide band-gap semiconductor, is a common choice for heterogeneous catalysis. Inertness to chemical environment and long-term photostability has made an important material in many practical applications. Investigation of TiO2 in the
rutile Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at vis ...
(bandgap 3.0 eV) and
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
(bandgap 3.2 eV) phases is common. The absorption of photons with energy equal to or greater than the band gap of the semiconductor initiates photocatalytic reactions. This produces electron-hole (e /h+) pairs: :TiO2 ->[][] e- (TiO2) + h+(TiO2) Where the electron is in the conduction band and the hole is in the valence band. The irradiated particle can behave as an electron donor or acceptor for molecules in contact with the semiconductor. It can participate in
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
reactions with adsorbed species, as the valence band hole is strongly oxidizing while the conduction band electron is strongly reducing.


Homogeneous photocatalysis

In homogeneous photocatalysis, the reactants and the photocatalysts exist in the same phase. The process by which the atmosphere self-cleans and removes large organic compounds is a gas phase homogenous photocatalysis reaction. The
ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
process is often referenced when developing many photocatalysts: :2 O3(g) + H2O(g) ->[] O2(g) + 2OH. Most homogeneous photocatalytic reactions are Aqueous solution, aqueous phase, with a Coordination complex, transition-metal complex photocatalyst. The wide use of transition-metal complexes as photocatalysts is in large part due to the large band gap and high stability of the species. Homogeneous photocatalysts are common in the production of clean hydrogen fuel production, with the notable use of
cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
and
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
complexes. Iron complex hydroxy-radical formation using the ozone process is common in the production of hydrogen fuel (similar to Fenton's reagent process done in low pH conditions without photoexcitation): :Fe^2+ +H2O2 ->[] Fe^3+ +OH- + HO. :Fe^3+ +H2O2 ->[] Fe^2+ H+ + HO2. :Fe^2+ +HO. -> Fe^3+ +OH- Complex-based photocatalysts are semiconductors, and operate under the same electronic properties as heterogeneous catalysts.


Plasmonic antenna-reactor photocatalysis

A plasmonic antenna-reactor photocatalyst is a photocatalyst that combines a
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
with attached antenna that increases the catalyst's ability to absorb light, thereby increasing its efficiency. A catalyst combined with an Au light absorber accelerated
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
-to-hydrogen reactions. The process is an alternative to the conventional Claus process that operates at . A Fe catalyst combined with a Cu light absorber can produce hydrogen from
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
() at ambient temperature using visible light. Conventional Cu-Ru production operates at .


Applications

Photoactive catalysts have been introduced over the last decade, such as and ZnO nanorods. Most suffer from the fact that they can only perform under UV irradiation due to their band structure. Other photocatalysts, including a graphene-ZnO nanocompound counter this problem. For several decades, there have been numerous attempts to develop active photocatalysts with broad light absorption capabilities. High-entropy photocatalysts, first introduced in 2020, are the result of one such effort. They have been utilized for hydrogen production, oxygen production, carbon dioxide conversion, and plastic waste conversion.


Paper

Micro-sized ZnO tetrapodal particles added to pilot paper production. The most common are one-dimensional nanostructures, such as nanorods, nanotubes, nanofibers, nanowires, but also nanoplates, nanosheets, nanospheres, tetrapods. ZnO is strongly oxidative, chemically stable, with enhanced photocatalytic activity, and has a large free-exciton
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
. It is non-toxic, abundant, biocompatible, biodegradable, environmentally friendly, low cost, and compatible with simple chemical synthesis. ZnO faces limits to its widespread use in photocatalysis under solar radiation. Several approaches have been suggested to overcome this limitation, including doping for reducing the band gap and improving charge carrier separation.


Water splitting

Photocatalytic water splitting separates water into hydrogen and oxygen: : The most prevalently investigated material, , is inefficient. Mixtures of and nickel oxide (NiO) are more active. NiO allows a significant explоitation of the visible spectrum. One efficient photocatalyst in the UV range is based on sodium tantalite (NaTaO3) doped with lanthanum and loaded with a nickel oxide cocatalyst. The surface is grooved with ''nanosteps'' from doping with lanthanum (3–15 nm range, see
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
). The NiO particles are present on the edges, with the oxygen evolving from the grooves.


Self-cleaning glass

Titanium dioxide Titanium dioxide, also known as titanium(IV) oxide or titania , is the inorganic compound derived from titanium with the chemical formula . When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or Colour Index Internationa ...
takes part in self-cleaning glass.
Free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabolic disorders Metabolism ...
s generated from oxidize
organic matter Organic matter, organic material or natural organic matter is the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come fro ...
. The rough wedge-like surface can be modified with a hydrophobic monolayer of octadecylphosphonic acid (ODP). surfaces that were plasma etched for 10 seconds and subsequent surface modifications with ODP showed a water contact angle greater than 150◦. The surface was converted into a superhydrophilic surface (water contact angle = 0◦) upon UV illumination, due to rapid decomposition of octadecylphosphonic acid coating resulting from photocatalysis. Due to 's wide band gap, light absorption by the semiconductor material and resulting superhydrophilic conversion of undoped requires ultraviolet radiation (wavelength <390 nm) and thereby restricts self-cleaning to outdoor applications.


Disinfection and cleaning

* Water disinfection/decontamination, a form of solar water disinfection ( SODIS). Adsorbents attract organics such as
tetrachloroethylene Tetrachloroethylene, also known as perchloroethylene or under the systematic name tetrachloroethene, and abbreviations such as perc (or PERC), and PCE, is a chlorocarbon with the formula . It is a non-flammable, stable, colorless and heavy liqu ...
. Adsorbents are placed in packed beds for 18 hours. Spent adsorbents are placed in regeneration fluid, essentially removing organics still attached by passing hot water opposite to the flow of water during adsorption. The regeneration fluid passes through fixed beds of silica gel photocatalysts to remove and decompose remaining organics. * self- sterilizing coatings (for application to food contact surfaces and in other environments where microbial pathogens spread by indirect contact). *Magnetic nanoparticle oxidation of organic
contaminant Contamination is the presence of a constituent, impurity, or some other undesirable element that renders something unsuitable, unfit or harmful for the physical body, natural environment, wiktionary:Workplace, workplace, etc. Types of contamina ...
s agitated using a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
. *Sterilization of surgical instruments and removal of fingerprints from electrical and optical components.


Hydrocarbon production from

conversion of into gaseous hydrocarbons. The proposed reaction mechanisms involve the creation of a highly reactive carbon radical from carbon monoxide and carbon dioxide which then reacts with photogenerated protons to ultimately form
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
. Efficiencies of -based photocatalysts are low, although nanostructures such as
carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s and
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic nanoparticles help.


Paints

ePaint is a less-toxic alternative to conventional antifouling marine paints that generates hydrogen peroxide. Photocatalysis of organic reactions by polypyridyl complexes, porphyrins, or other dyes can produce materials inaccessible by classical approaches. Most photocatalytic dye degradation studies have employed . The
anatase Anatase is a metastable mineral form of titanium dioxide (TiO2) with a Tetragonal crystal system, tetragonal crystal structure. Although colorless or white when pure, anatase in nature is usually a black solid due to impurities. Three other Pol ...
form of has higher photon absorption characteristics.


Filtration membranes

Photocatalyst radical generation species allow for the degradation of organic pollutants into non-toxic compounds at a high efficiency. Use of CuO nanosheets to breakdown azo bonds in food dyes is one such example, with 96.99% degradation after only 6 minutes. Degradation of organic matter is a highly applicable property, particularly in waste processing. The use of photocatalyst TiO2 as a support system for filtration
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
s shows promise in improving membrane
bioreactor A bioreactor is any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical reaction, chemical process is carried out which involves organisms or biochemistry, biochem ...
s in the treatment of wastewater. Polymer-based membranes have shown reduced
fouling Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling, organic) or a non-living substance (inorganic). Fouling is usually distinguished from other surfac ...
and self-cleaning properties in both blended and coated TiO2 membranes. Photocatalyst-coated membranes show the most promise, as the increased surface exposure of the photocatalyst increases its organic degradation activity. Photocatalysts are also highly effective reducers of toxic
heavy metals upright=1.2, Crystals of lead.html" ;"title="osmium, a heavy metal nearly twice as dense as lead">osmium, a heavy metal nearly twice as dense as lead Heavy metals is a controversial and ambiguous term for metallic elements with relatively h ...
like
hexavalent chromium Hexavalent chromium (chromium(VI), Cr(VI), chromium 6) is any chemical compound that contains the element chromium in the +6 oxidation state (thus hexavalent). It has been identified as carcinogenic, which is of concern since approximately of ...
from water systems. Under visible light the reduction of Cr(VI) by a Ce-ZrO2 sol-gel on a silicon carbide was 97% effective at reducing the heavy metal to trivalent chromium.


Air Filtration

Light2CAT was a project funded by the
European Commission The European Commission (EC) is the primary Executive (government), executive arm of the European Union (EU). It operates as a cabinet government, with a number of European Commissioner, members of the Commission (directorial system, informall ...
from 2012 to 2015. It aimed to develop a modified that can absorb visible light and include this modified into construction concrete. The degrades harmful pollutants such as NOx into NO3. The modified TiO2 is in use in Copenhagen and Holbæk, Denmark, and Valencia, Spain. This “self-cleaning” concrete led to a 5-20% reduction in NOx over the course of a year.


Quantification

ISO 22197-1:2007 specifies a test method for the measurement of removal for materials that contain a photocatalyst or have superficial photocatalytic films. Specific FTIR systems are used to characterize photocatalytic activity or passivity, especially with respect to volatile organic compounds, and representative binder matrices. Mass spectrometry allows measurement of photocatalytic activity by tracking the decomposition of gaseous pollutants such as nitrogen NOx or .


See also

* Light harvesting materials * Photoelectrochemical cell * Photolysis * Photocatalyst activity indicator ink * Photocatalytic water splitting * Photoredox catalysis * Photoelectrochemical oxidation * Photosensitizer * Green photocatalyst


References

{{Authority control Photochemistry Catalysis