Phosphatase
   HOME

TheInfoList



OR:

In
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
, a phosphatase is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that uses water to cleave a
phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, ...
monoester into a
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
ion and an
alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
. Because a phosphatase enzyme catalyzes the
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of its substrate, it is a subcategory of
hydrolase In biochemistry, hydrolases constitute a class of enzymes that commonly function as biochemical catalysts that use water to break a chemical bond: :\ce \quad \xrightarrowtext\quad \ce This typically results in dividing a larger molecule into s ...
s. Phosphatase enzymes are essential to many biological functions, because
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
(e.g. by protein kinases) and
dephosphorylation In biochemistry, dephosphorylation is the removal of a phosphate () group from an organic compound by hydrolysis. It is a reversible post-translational modification. Dephosphorylation and its counterpart, phosphorylation, activate and deactivate e ...
(by phosphatases) serve diverse roles in cellular regulation and signaling. Whereas phosphatases remove phosphate groups from molecules, kinases catalyze the transfer of phosphate groups to molecules from ATP. Together, kinases and phosphatases direct a form of
post-translational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translation (biolog ...
that is essential to the cell's regulatory network. Phosphatase enzymes are not to be confused with phosphorylase enzymes, which catalyze the transfer of a phosphate group from hydrogen phosphate to an acceptor. Due to their prevalence in cellular regulation, phosphatases are an area of interest for pharmaceutical research.


Biochemistry

Phosphatases catalyze the
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of a phosphomonoester, removing a
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
moiety from the substrate. Water is split in the reaction, with the -OH group attaching to the phosphate ion, and the H+ protonating the hydroxyl group of the other product. The net result of the reaction is the destruction of a phosphomonoester and the creation of both a phosphate ion and a molecule with a free hydroxyl group. Phosphatases are able to dephosphorylate seemingly different sites on their substrates with great specificity. Identifying the "phosphatase code," that is, the mechanisms and rules that govern substrate recognition for phosphatases, is still a work in progress, but the first comparative analysis of all the protein phosphatases encoded across nine
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
'phosphatome'
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
s is now available. Studies reveal that so called "docking interactions" play a significant role in substrate binding. A phosphatase recognizes and interacts with various motifs (elements of secondary structure) on its substrate; these motifs bind with low affinity to docking sites on the phosphatase, which are not contained within its active site. Although each individual docking interaction is weak, many interactions occur simultaneously, conferring a cumulative effect on binding specificity. Docking interactions can also allosterically regulate phosphatases and thus influence their catalytic activity.


Functions

In contrast to kinases, phosphatase enzymes recognize and catalyze a wider array of substrates and reactions. For example, in humans, Ser/Thr kinases outnumber Ser/Thr phosphatases by a factor of ten. To some extent, this disparity results from incomplete knowledge of the human
phosphatome The phosphatome of an organism is the set of phosphatase genes in its genome. Phosphatases are enzymes that catalyze the removal of phosphate from biomolecules. Over half of all cellular proteins are modified by phosphorylation which typically con ...
, that is, the complete set of phosphatases expressed in a cell, tissue, or organism. Many phosphatases have yet to be discovered, and for numerous known phosphatases, a substrate has yet to be identified. However, among well-studied phosphatase/kinase pairs, phosphatases exhibit greater variety than their kinase counterparts in both form and function; this may result from the lesser degree of conservation among phosphatases.


Distinctions

Phosphatases should not be confused with phosphorylases, which add phosphate groups.


Protein phosphatases

A protein phosphatase is an enzyme that dephosphorylates an amino acid residue of its protein substrate. Whereas protein kinases act as signaling molecules by phosphorylating proteins, phosphatases remove the phosphate group, which is essential if the system of intracellular signaling is to be able to reset for future use. The tandem work of kinases and phosphatases constitute a significant element of the cell's regulatory network. Phosphorylation (and dephosphorylation) is among the most common modes of
posttranslational modification In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA ...
in proteins, and it is estimated that, at any given time, up to 30% of all proteins are phosphorylated. Two notable protein phosphatases are PP2A and PP2B. PP2A is involved in multiple regulatory processes, such as DNA replication, metabolism, transcription, and development. PP2B, also called
calcineurin Calcineurin (CaN) is a calcium and calmodulin dependent serine/threonine protein phosphatase (also known as protein phosphatase 3, and calcium-dependent serine-threonine phosphatase). It activates the T cells of the immune system and can be block ...
, is involved in the proliferation of
T cell T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
s; because of this, it is the target of some drugs that seek to suppress the immune system.


Nucleotidases

A nucleotidase is an enzyme that catalyzes the hydrolysis of a
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
, forming a nucleoside and a phosphate ion. Nucleotidases are essential for cellular
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
, because they are partially responsible for maintaining a balanced ratio of nucleotides to nucleosides. Some nucleotidases function outside the cell, creating nucleosides that can be transported into the cell and used to regenerate nucleotides via salvage pathways. Inside the cell, nucleotidases may help to maintain energy levels under stress conditions. A cell deprived of oxygen and nutrients may catabolize more nucleotides to boost levels of nucleoside triphosphates such as ATP, the primary energy currency of the cell.


In gluconeogenesis

Phosphatases can also act on
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s, such as intermediates in
gluconeogenesis Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verte ...
. Gluconeogenesis is a biosynthetic pathway wherein
glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
is created from noncarbohydrate precursors; the pathway is essential because many tissues can only derive energy from glucose. Two phosphatases, glucose-6-phosphatase and fructose-1,6-bisphosphatase, catalyze irreversible steps in gluconeogenesis. Each cleaves a phosphate group from a six-carbon sugar phosphate intermediate.


Classification

Within the larger class of phosphatase, the Enzyme Commission recognizes 104 distinct enzyme families. Phosphatases are classified by substrate specificity and sequence homology in catalytic domains. Despite their classification into over one hundred families, all phosphatases still catalyze the same general hydrolysis reaction. In in-vitro experiments, phosphatase enzymes seem to recognize many different substrates, and one substrate may be recognized by many different phosphatases. However, when experiments have been carried out in-vivo, phosphatase enzymes have been shown to be incredibly specific. In some cases, a protein phosphatase (i.e. one defined by its recognition of protein substrates) can catalyze the dephosphorylation of nonprotein substrates. Similarly, dual-specificity tyrosine phosphatases can dephosphorylate not only tyrosine residues, but also serine residues. Thus, one phosphatase can exhibit the qualities of multiple phosphatase families.


See also

* Acid phosphatase * Alkaline phosphatase * Endonuclease/Exonuclease/phosphatase family * Kinase *
Phosphatome The phosphatome of an organism is the set of phosphatase genes in its genome. Phosphatases are enzymes that catalyze the removal of phosphate from biomolecules. Over half of all cellular proteins are modified by phosphorylation which typically con ...
* Phosphotransferase * Protein phosphatase *
Protein phosphatase 2 Protein phosphatase 2 (PP2), also known as PP2A, is an enzyme that in humans is encoded by the ''PPP2CA'' gene. The PP2A heterotrimeric protein phosphatase is ubiquitously expressed, accounting for a large fraction of phosphatase activity in ...
(PP2A)


References


External links

* {{Portal bar, Biology, border=no EC 3.1.3