A portmanteau word, or portmanteau (, ) is a blend of words) is a complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
representing a sinusoidal function
A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in m ...
whose amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of a ...
(''A''), angular frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit ti ...
(''ω''), and initial phase (''θ'') are time-invariant
In control theory, a time-invariant (TIV) system has a time-dependent system function that is not a direct function of time. Such systems are regarded as a class of systems in the field of system analysis. The time-dependent system function is ...
. It is related to a more general concept called analytic representation
In mathematics and signal processing, an analytic signal is a complex-valued function that has no negative frequency components. The real and imaginary parts of an analytic signal are real-valued functions related to each other by the Hilbe ...
,[Bracewell, Ron. ''The Fourier Transform and Its Applications''. McGraw-Hill, 1965. p269] which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and (in older texts) sinor or even complexor.
A common situation in electrical network
An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sour ...
s powered by time varying current is the existence of multiple sinusoids all with the same frequency, but different amplitudes and phases. The only difference in their analytic representations is the complex amplitude (phasor). A linear combination of such functions can be represented as a linear combination of phasors (known as phasor arithmetic or phasor algebra) and the time/frequency dependent factor that they all have in common.
The origin of the term phasor rightfully suggests that a (diagrammatic) calculus somewhat similar to that possible for vectors is possible for phasors as well. An important additional feature of the phasor transform is that differentiation
Differentiation may refer to:
Business
* Differentiation (economics), the process of making a product different from other similar products
* Product differentiation, in marketing
* Differentiated service, a service that varies with the identity ...
and integration
Integration may refer to:
Biology
* Multisensory integration
* Path integration
* Pre-integration complex, viral genetic material used to insert a viral genome into a host genome
*DNA integration, by means of site-specific recombinase technolo ...
of sinusoidal signals (having constant amplitude, period and phase) corresponds to simple algebraic operation
Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings.
Algebraic may also refer to:
* Algebraic data type, a dat ...
s on the phasors; the phasor transform thus allows the analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
(calculation) of the AC steady state
In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ' ...
of RLC circuit
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components ...
s by solving simple algebraic equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form
:P = 0
where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation ...
s (albeit with complex coefficients) in the phasor domain instead of solving differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, a ...
s (with real
Real may refer to:
Currencies
* Brazilian real (R$)
* Central American Republic real
* Mexican real
* Portuguese real
* Spanish real
* Spanish colonial real
Music Albums
* ''Real'' (L'Arc-en-Ciel album) (2000)
* ''Real'' (Bright album) (201 ...
coefficients) in the time domain. The originator of the phasor transform was Charles Proteus Steinmetz
Charles Proteus Steinmetz (born Karl August Rudolph Steinmetz, April 9, 1865 – October 26, 1923) was a German-born American mathematician and electrical engineer and professor at Union College. He fostered the development of alternatin ...
working at General Electric
General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston. The company operated in sectors including healthcare, aviation, power, renewable energ ...
in the late 19th century.
Glossing over some mathematical details, the phasor transform can also be seen as a particular case of the Laplace transform
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (), is an integral transform that converts a function of a real variable (usually t, in the ''time domain'') to a function of a complex variable s (in the ...
, which additionally can be used to (simultaneously) derive the transient response
In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt events but to any event that aff ...
of an RLC circuit. However, the Laplace transform is mathematically more difficult to apply and the effort may be unjustified if only steady state analysis is required.
Notation
Phasor notation (also known as angle notation) is a mathematical notation
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations and any other mathematical objects, and assembling them into expressions and formulas. Mathematical notation is widely used in mathe ...
used in electronics engineering
Electronics engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current ...
and electrical engineering. can represent either the vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
or the complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
, with , both of which have magnitudes of 1. A vector whose polar coordinates
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to t ...
are magnitude and angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles ...
is written
The angle may be stated in degrees
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathematics
...
with an implied conversion from degrees to radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before tha ...
s. For example would be assumed to be which is the vector or the number
Definition
A real-valued sinusoid with constant amplitude, frequency, and phase has the form:
:
where only parameter is time-variant. The inclusion of an imaginary component:
:
gives it, in accordance with Euler's formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for ...
, the factoring property described in the lede paragraph:
:
whose real part is the original sinusoid. The benefit of the complex representation is that linear operations with other complex representations produces a complex result whose real part reflects the same linear operations with the real parts of the other complex sinusoids. Furthermore, all the mathematics can be done with just the phasors and the common factor is reinserted prior to the real part of the result.
The function is called the ''analytic representation
In mathematics and signal processing, an analytic signal is a complex-valued function that has no negative frequency components. The real and imaginary parts of an analytic signal are real-valued functions related to each other by the Hilbe ...
'' of Figure 2 depicts it as a rotating vector in the complex plane. It is sometimes convenient to refer to the entire function as a ''phasor'', as we do in the next section. But the term ''phasor'' usually implies just the static complex number
Arithmetic
Multiplication by a constant (scalar)
Multiplication of the phasor by a complex constant, , produces another phasor. That means its only effect is to change the amplitude and phase of the underlying sinusoid:
In electronics, would represent an impedance, which is independent of time. In particular it is ''not'' the shorthand notation for another phasor. Multiplying a phasor current by an impedance produces a phasor voltage. But the product of two phasors (or squaring a phasor) would represent the product of two sinusoids, which is a non-linear operation that produces new frequency components. Phasor notation can only represent systems with one frequency, such as a linear system stimulated by a sinusoid.
Addition
The sum of multiple phasors produces another phasor. That is because the sum of sinusoids with the same frequency is also a sinusoid with that frequency:
where:
and, if we take