HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
the Petersson inner product is an
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
defined on the space of entire
modular form In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modul ...
s. It was introduced by the German mathematician Hans Petersson.


Definition

Let \mathbb_k be the space of entire modular forms of weight k and \mathbb_k the space of cusp forms. The mapping \langle \cdot , \cdot \rangle : \mathbb_k \times \mathbb_k \rightarrow \mathbb, :\langle f , g \rangle := \int_\mathrm f(\tau) \overline (\operatorname\tau)^k d\nu (\tau) is called Petersson inner product, where :\mathrm = \left\ is a fundamental region of the
modular group In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
\Gamma and for \tau = x + iy :d\nu(\tau) = y^dxdy is the hyperbolic volume form.


Properties

The integral is absolutely convergent and the Petersson inner product is a positive definite
Hermitian form In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear map, linear in each of its arguments, but a sesquilinear f ...
. For the
Hecke operator In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by , is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic rep ...
s T_n, and for forms f,g of level \Gamma_0, we have: :\langle T_n f , g \rangle = \langle f , T_n g \rangle This can be used to show that the space of cusp forms of level \Gamma_0 has an orthonormal basis consisting of simultaneous
eigenfunction In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
s for the Hecke operators and the
Fourier coefficients A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
of these forms are all real.


See also

* Weil–Petersson metric


References

* T.M. Apostol, ''Modular Functions and Dirichlet Series in Number Theory'', Springer Verlag Berlin Heidelberg New York 1990, * M. Koecher, A. Krieg, ''Elliptische Funktionen und Modulformen'', Springer Verlag Berlin Heidelberg New York 1998, * S. Lang, ''Introduction to Modular Forms'', Springer Verlag Berlin Heidelberg New York 2001, {{ISBN, 3-540-07833-9 Modular forms