HOME

TheInfoList



OR:

A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than and sometimes greater than . Most pegmatites are composed of
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
,
feldspar Feldspar ( ; sometimes spelled felspar) is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagiocl ...
, and mica, having a similar silicic composition to
granite Granite ( ) is a coarse-grained (phanerite, phaneritic) intrusive rock, intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly coo ...
. However, rarer intermediate composition and mafic pegmatites are known. Many of the world's largest crystals are found within pegmatites. These include crystals of microcline,
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
, mica, spodumene, beryl, and
tourmaline Tourmaline ( ) is a crystalline silicate mineral, silicate mineral group in which boron is chemical compound, compounded with chemical element, elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone comes in a ...
. Some individual crystals are over long. Most pegmatites are thought to form from the last fluid fraction of a large crystallizing
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
body. This residual fluid is highly enriched in volatiles and trace elements, and its very low viscosity allows components to migrate rapidly to join an existing crystal rather than coming together to form new crystals. This allows a few very large crystals to form. While most pegmatites have a simple composition of minerals common in ordinary igneous rock, a few pegmatites have a complex composition, with numerous unusual minerals of rare elements. These complex pegmatites are mined for
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
, beryllium, boron,
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
, tin,
tantalum Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
, niobium, rare earth elements, uranium, and other valuable commodities.


Etymology

The word ''pegmatite'' derives from Homeric Greek, πήγνυμι (''pēgnymi''), which means “to bind together”, in reference to the intertwined crystals of
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
and
feldspar Feldspar ( ; sometimes spelled felspar) is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagiocl ...
in the texture known as graphic granite. The term was first used by
René Just Haüy René Just Haüy () FRS MWS FRSE (28 February 1743 – 1 June 1822) was a French priest and mineralogist, commonly styled the Abbé Haüy after he was made an honorary canon of Notre-Dame de Paris, Notre Dame. Due to his innovative work on cryst ...
in 1822 as a synonym for graphic granite. Wilhelm Karl Ritter von Haidinger first used the term in its present meaning in 1845.


General description

Pegmatites are exceptionally coarse-grained igneous rocks composed of interlocking
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s, with individual crystals usually over in size and sometimes exceeding . Most pegmatites have a composition similar to
granite Granite ( ) is a coarse-grained (phanerite, phaneritic) intrusive rock, intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly coo ...
, so that their most common minerals are
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
,
feldspar Feldspar ( ; sometimes spelled felspar) is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagiocl ...
, and mica. However, other pegmatite compositions are known, including compositions similar to nepheline syenite or gabbro. The term ''pegmatite'' is thus purely a textural description. Geologists typically prefix the term with a compositional description, so that ''granitic pegmatite'' is a pegmatite with the composition of granite while ''nepheline syenite pegmatite'' is a pegmatite with the composition of nepheline syenite. However, the
British Geological Survey The British Geological Survey (BGS) is a partly publicly funded body which aims to advance Earth science, geoscientific knowledge of the United Kingdom landmass and its continental shelf by means of systematic surveying, monitoring and research. ...
(BGS) discourages this usage, preferring terms like ''biotite-quartz-feldspar pegmatite'' for a pegmatite with a typical granitic composition, dominated by feldspar with lesser quartz and biotite. Under BGS terminology, a ''pegmatitic rock'' (for example, a ''pegmatitic gabbro'') is a coarse-grained rock containing patches of much coarser-grained rock of essentially the same composition. Individual crystals in pegmatites can be enormous in size. It is likely that the largest crystals ever found were feldspar crystals in pegmatites from Karelia with masses of thousands of tons. Quartz crystals with masses measured in thousands of pounds and micas over across and thick have been found. Spodumene crystals over long have been found in the Black Hills of
South Dakota South Dakota (; Sioux language, Sioux: , ) is a U.S. state, state in the West North Central states, North Central region of the United States. It is also part of the Great Plains. South Dakota is named after the Dakota people, Dakota Sioux ...
, and beryl crystals long and in diameter have been found at Albany, Maine. The largest beryl crystal ever found was from Malakialina on Madagascar, weighing about 380 tons, with a length of and a crosscut of . Pegmatite bodies are usually of minor size compared to typical intrusive rock bodies. Pegmatite body size is on the order of magnitude of one to a few hundred meters. Compared to typical igneous rocks they are rather inhomogeneous and may show zones with different mineral assemblages. Crystal size and mineral assemblages are usually oriented parallel to the wall rock or even concentric for pegmatite lenses.


Classification

Modern pegmatite classification schemes are strongly influenced by the depth-zone classification of granitic rocks published by Buddington (1959), and the Ginsburg & Rodionov (1960) and Ginsburg et al. (1979) classification which categorized pegmatites according to their depth of emplacement and relationship to metamorphism and granitic plutons. Cerny’s (1991) revision of that classification scheme is widely used, Cerny’s (1991) pegmatite classification, which is a combination of emplacement depth, metamorphic grade and minor element content, has provided significant insight into the origin of pegmatitic melts and their relative degrees of fractionation. Granitic pegmatites are commonly ranked into three hierarchies (class – family – type – subtype) depending upon their mineralogical-geochemical characteristics and depth of emplacement according to Cerny (1991). Classes are Abyssal, Muscovite, Rare-Element and Miarolitic. The Rare-Element Class is subdivided based on composition into LCT and NYF families: LCT for Lithium, Cesium, and Tantalum enrichment and NYF for Niobium, Yttrium, and Fluorine enrichment. Most authors classify pegmatites according to LCT- and NYF-types and subtypes. Another important contribution of the classification is the petrogenetic component of the classification, which shows the association of LCT pegmatites with mainly orogenic plutons, and NYF pegmatites with mainly anorogenic plutons. Lately, there have been a few attempts to create a new classification for pegmatites less dependent on mineralogy and more reflective of their geological setting. On this issue, one of the most notable efforts on this matter is Wise's (2022) pegmatite classification, which focuses mostly on the source of the magma from which the pegmatite crystalizes.


Petrology

Pegmatites form under conditions in which the rate of new crystal
nucleation In thermodynamics, nucleation is the first step in the formation of either a new Phase (matter), thermodynamic phase or Crystal structure, structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically def ...
is much slower than the rate of crystal growth. Large crystals are favored. In normal igneous rocks, coarse texture is a result of slow cooling deep underground. It is not clear if pegmatite forms by slow or rapid cooling. In some studies, crystals in pegmatitic conditions have been recorded to grow at a rate ranging from 1 m to 10 m per day. Pegmatites are the last part of a magma body to crystallize. This final fluid fraction is enriched in volatile and trace elements. The residual magma undergoes phase separation into a melt phase and a hydrous fluid phase saturated with
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
, alkalis, and other elements. Such phase separation requires formation from a wet magma, rich enough in water to saturate before more than two-thirds of the magma is crystallized. Otherwise, the separation of the fluid phase is difficult to explain. Granite requires a water content of 4 wt% at a pressure of , but only 1.5 wt% at for phase separation to take place. The volatiles (primarily water, borates,
fluoride Fluoride (). According to this source, is a possible pronunciation in British English. is an Inorganic chemistry, inorganic, Monatomic ion, monatomic Ion#Anions and cations, anion of fluorine, with the chemical formula (also written ), whose ...
s, chlorides, and
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
s) are concentrated in the hydrous phase, greatly lowering its viscosity. The silica in the hydrous phase is completely depolymerized, existing almost entirely as orthosilicate, with all oxygen bridges between silicon ions broken. The low viscosity promotes rapid diffusion through the fluid, allowing growth of large crystals. When this hydrous fluid is injected into the surrounding country rock, minerals crystallize from the outside in to form a zoned pegmatite, with different minerals predominating in concentric zones. A typical sequence of deposition begins with microcline and quartz, with minor schorl and
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. Garnet minerals, while sharing similar physical and crystallographic properties, exhibit a wide range of chemical compositions, de ...
. This is followed by deposition of albite, lepidolite, gem
tourmaline Tourmaline ( ) is a crystalline silicate mineral, silicate mineral group in which boron is chemical compound, compounded with chemical element, elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone comes in a ...
, beryl, spodumene, amblygonite, topaz,
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of Hydroxide, OH−, Fluoride, F− and Chloride, Cl− ion, respectively, in the crystal. The formula of the admixture of ...
, and fluorite, which may partially replace some of the minerals in the earlier zone. The center of the pegmatite may have cavities lined with spectacular gemstone crystals. Some pegmatites have more complex zoning. Five distinct zones are recognized in the Harding Pegmatite in the Picuris Mountains of northern
New Mexico New Mexico is a state in the Southwestern United States, Southwestern region of the United States. It is one of the Mountain States of the southern Rocky Mountains, sharing the Four Corners region with Utah, Colorado, and Arizona. It also ...
, US. These are: * A white border rind of fine-grained quartz-albite muscovite pegmatite. * A continuous layer of very coarse quartz, albite, and muscovite. This zone also contains microcline, and has abundant accessory apatite, beryl, and tantalite. Beryl is occasionally very coarse and abundant. * A continuous layer of massive quartz. This zone is also rich in muscovite, microcline, and cleavelandite. * A spectacular quartz and lath-spodumene zone. The spodumene occurs as blade-like crystals, sometimes of enormous size, mostly oriented at random but sometimes arranged to form a comb-like structure. Accessory minerals are beryl, apatite, microcline, and tantalum-niobium minerals, especially in the lower part of this zone. There is some pseudomorphic replacement of spodumene by rose muscovite and quartz by cleavelandite. * The core of the pegmatite, known as "spotted rock", which is relatively fine-grained spodumene, microcline, and quartz, with accompanying finer-grained albite, lithium-bearing muscovite, lepidolite, microlite, and tantalite. Much of the spodumene and microcline have been extensively corroded and replaced by fine-grained micas. Large crystals nucleate on the margins of pegmatites, becoming larger as they grow inward. These include very large conical alkali feldspar crystals. Aplites are commonly present. These may cut across the pegmatite, but also form zones or irregular patches around coarser material. The aplites are often layered, showing evidence of deformation. Xenoliths may be found in the body of the pegmatite, but their original mineral content is replaced by quartz and alkali feldspar, so that they are difficult to distinguish from the surrounding pegmatite. Pegmatite also commonly replaces part of the surrounding country rock. Because pegmatites likely crystallize from a fluid-dominated phase, rather than a melt phase, they straddle the boundary between hydrothermal mineral deposits and igneous intrusions. Although there is broad agreement on the basic mechanisms by which they form, the details of pegmatite formation remain enigmatic. Pegmatites have characteristics inconsistent with other igneous intrusions. They are not
porphyritic Porphyritic is an adjective used in geology to describe igneous rocks with a distinct difference in the size of mineral crystals, with the larger crystals known as phenocrysts. Both extrusive and intrusive rocks can be porphyritic, meaning ...
, and show no chilled margin. On the contrary, the largest crystals are often found on the margins of the pegmatite body. While aplites are sometimes found on the margins, they are as likely to occur within the body of the pegmatite. The crystals are never aligned in a way that would indicate flow, but are perpendicular to the walls. This implies formation in a static environment. Some pegmatities take the form of isolated pods, with no obvious feeder conduit. As a result, metamorphic or metasomatic origins have sometimes been suggested for pegmatites. A metamorphic pegmatite would be formed by removal of volatiles from metamorphic rocks, particularly felsic gneiss, to liberate the right constituents and water, at the right temperature. A metasomatic pegmatite would be formed by hydrothermal circulation of hot alteration fluids upon a rock mass, with bulk chemical and textural change. Metasomatism is currently not favored as a mechanism for pegmatite formation and it is likely that metamorphism and magmatism are both contributors toward the conditions necessary for pegmatite genesis.


Mineralogy

Most pegmatites have a simple composition, often being composed entirely of minerals common in granite, such as feldspar, mica, and quartz. The feldspar and quartz often show graphic texture. Rarely, pegmatites are extremely enriched in incompatible elements, such as
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
,
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
, beryllium, tin, niobium, zirconium, uranium, thorium, boron, phosphorus, and fluorine. These complex pegmatites contain unusual minerals of these elements, such as beryl, spodumene, lepidolite, amblygonite, topaz, apatite, fluorite, tourmaline, triphylite, columbite, monazite, and molybdenite. Some of these can be important ore minerals. Some gemstones, such as emerald, are found almost exclusively in pegmatites. Nepheline syenite pegmatites typically contain zirconium, titanium, and rare earth element minerals. Gabbroic pegmatites typically consist of exceptionally coarse interlocking pyroxene and plagioclase.


Geochemistry

Pegmatites are enriched in volatile and incompatible elements, consistent with their likely origin as the final melt fraction of a crystallizing body of magma. However, it is difficult to get a representative composition of a pegmatite, due to the large size of the constituent mineral crystals. Hence, pegmatite is often characterised by sampling the individual minerals that compose the pegmatite, and comparisons are made according to mineral chemistry. A common error is to assume that the wall zone is a chilled margin whose composition is representative of the original melt. Pegmatites derived from batholiths can be divided into a family of NYF pegmatites, characterized by progressive enrichment in niobium,
yttrium Yttrium is a chemical element; it has Symbol (chemistry), symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost a ...
, and fluorine as well as enrichment in beryllium, rare earth elements, scandium, titanium, zirconium, thorium, and uranium; and a family of LCT pegmatites, characterized by progressive accumulation of lithium,
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
, and tantalum, as well as enrichment in rubidium, beryllium, tin, barium, phosphorus, and fluorine. The NYF pegmatites likely fractionated from A- to I-type granites that were relatively low in aluminium (subaluminous to metaluminous granites). These granites originated from depleted crust or mantle rock. LCT pegmatites most likely formed from S-type granites or possibly I-type granites, with a higher aluminium content (peraluminous granites). Intermediate pegmatites (NYF + LCT pegmatites) are known and may have formed by contamination of an initially NYF magma body with melted undepleted supracrustral rock.


Economic importance

Pegmatites often contain rare elements and
gemstone A gemstone (also called a fine gem, jewel, precious stone, semiprecious stone, or simply gem) is a piece of mineral crystal which, when cut or polished, is used to make jewellery, jewelry or other adornments. Certain Rock (geology), rocks (such ...
s. Examples include aquamarine, tourmaline, topaz, fluorite, apatite, and corundum, often along with tin, rare earth, and tungsten minerals, among others. Pegmatites have been mined for both quartz and feldspar. For quartz mining, pegmatites with central quartz masses have been of particular interest. Pegmatites are the primary source of
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
either as spodumene, lithiophyllite or usually from lepidolite. The primary source for
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
is pollucite, a mineral from a zoned pegmatite. The majority of the world's beryllium is sourced from non-gem quality beryl within pegmatite. Tantalum, niobium, and rare-earth elements are sourced from a few pegmatites worldwide, such as the Greenbushes Pegmatite, the Kibara Belt of
Rwanda Rwanda, officially the Republic of Rwanda, is a landlocked country in the Great Rift Valley of East Africa, where the African Great Lakes region and Southeast Africa converge. Located a few degrees south of the Equator, Rwanda is bordered by ...
and
Democratic Republic of the Congo The Democratic Republic of the Congo (DRC), also known as the DR Congo, Congo-Kinshasa, or simply the Congo (the last ambiguously also referring to the neighbouring Republic of the Congo), is a country in Central Africa. By land area, it is t ...
, the Kenticha mine of
Ethiopia Ethiopia, officially the Federal Democratic Republic of Ethiopia, is a landlocked country located in the Horn of Africa region of East Africa. It shares borders with Eritrea to the north, Djibouti to the northeast, Somalia to the east, Ken ...
the Alto Ligonha Province of
Mozambique Mozambique, officially the Republic of Mozambique, is a country located in Southeast Africa bordered by the Indian Ocean to the east, Tanzania to the north, Malawi and Zambia to the northwest, Zimbabwe to the west, and Eswatini and South Afr ...
, and the Mibra (Volta) mine of
Minas Gerais Minas Gerais () is one of the 27 federative units of Brazil, being the fourth largest state by area and the second largest in number of inhabitants with a population of 20,539,989 according to the 2022 Brazilian census, 2022 census. Located in ...
, Brazil.


Occurrence

Notable pegmatite occurrences are found worldwide within the major cratons, and within greenschist-facies metamorphic belts. However, pegmatite localities are only well recorded when economic mineralisation is found. Pegmatites are found as irregular dikes, sills, or veins, and are most common at the margins of batholiths (great masses of intrusive igneous rock). Most are closely related spatially and genetically to large intrusions. They may take the form of veins or dikes in the intrusion itself, but more commonly, they extend into the surrounding country rock, especially above the intrusion. Some pegmatites surrounded by metamorphic rock have no obvious connection to a larger intrusion. Pegmatites in low-grade metamorphic rock tend to be dominated by quartz and carbonate minerals. Pegmatites in metamorphic rock of higher grade are dominted by alkali feldspar. Gabbroic pegmatites typically occur as lenses within bodies of gabbro or diabase. Nepheline syenite pegmatites are common in
alkaline In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The ...
igneous complexes. File:Pegmatite dans micaschiste.jpg, Pegmatite (light colored) in dark mica schist, Île de Noirmoutier, France File:Pegmatite Formation (Isle of Skye).jpg, Pegmatite (pink),
Isle of Skye The Isle of Skye, or simply Skye, is the largest and northernmost of the major islands in the Inner Hebrides of Scotland. The island's peninsulas radiate from a mountainous hub dominated by the Cuillin, the rocky slopes of which provide some of ...
, Scotland File:BlackCanyon-Pegmatites.jpg, Potassium feldspar pegmatites at the Black Canyon of the Gunnison National Park, Colorado File:Pegmatite dyke Cap-de-Creus.jpg, Hercynian pegmatite dike intruded into
Ediacaran The Ediacaran ( ) is a geological period of the Neoproterozoic geologic era, Era that spans 96 million years from the end of the Cryogenian Period at 635 Million years ago, Mya to the beginning of the Cambrian Period at 538.8 Mya. It is the last ...
schist, Cap de Creus peninsula, Catalonia, SpainElena Druguet and Jordi Carreras
''Folds and Shear Zones at Cap de Creus''
2019, Field Trip Guide, at semanticscholar.org.


References


Further reading

*London, D. (2008): Pegmatites. Canadian Mineralogist Special Publication 10, 347 pp. *Tan, Li-ping, 1966, ''Major Pegmatite Deposits of New York State,'' New York State Museum Bulletin No. 408
Pegmatopia: David London, School of Geology & Geophysics, University of Oklahoma


External links

* {{Authority control Pegmatite