Pd-107
   HOME

TheInfoList



OR:

Natural
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
(Pd) is composed of six stable
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s, Pd, Pd, Pd, Pd, Pd, and Pd, although Pd and Pd are theoretically unstable. The most stable
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s are Pd with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 6.5 million years, Pd with a half-life of 17 days, and Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
s ranging from 90.949 u (Pd) to 128.96 u (Pd). Most of these have half-lives that are less than 30 minutes except Pd (half-life: 8.47 hours), Pd (half-life: 13.7 hours), and Pd (half-life: 21 hours). The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
before the most abundant stable isotope, Pd, is
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
and the primary mode after is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. The primary
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
before Pd is
rhodium Rhodium is a chemical element; it has symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isot ...
and the primary product after is
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
.
Radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
Ag is a decay product of Pd and was first discovered in the Santa Clara meteorite of 1978. The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, must reflect the presence of short-lived nuclides in the early Solar System.


List of isotopes

, -id=Palladium-90 , rowspan=3, 90Pd , rowspan=3 style="text-align:right" , 46 , rowspan=3 style="text-align:right" , 44 , rowspan=3, 89.95737(43)# , rowspan=3, 10# ms
400 ns, β+? , 90Rh , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β+, p? , 89Ru , - , 2p? , 88Ru , -id=Palladium-91 , rowspan=2, 91Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 45 , rowspan=2, 90.95044(45)# , rowspan=2, 32(3) ms , β+ (96.9%) , 91Rh , rowspan=2, 7/2+# , rowspan=2, , rowspan=2, , - , β+, p (3.1%) , 90Ru , -id=Palladium-92 , rowspan=2, 92Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 46 , rowspan=2, 91.94119(37) , rowspan=2, 1.06(3) s , β+ (98.4%) , 92Rh , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (1.6%) , 91Ru , -id=Palladium-93 , rowspan=2, 93Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 47 , rowspan=2, 92.93668(40) , rowspan=2, 1.17(2) s , β+ (92.6%) , 93Rh , rowspan=2, (9/2+) , rowspan=2, , rowspan=2, , - , β+, p (7.4%) , 92Ru , -id=Palladium-94 , rowspan=2, 94Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 48 , rowspan=2, 93.9290363(46) , rowspan=2, 9.1(3) s , β+ (>99.87%) , 94Rh , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (<0.13%) , 93Ru , -id=Palladium-94m1 , style="text-indent:1em" , 94m1Pd , colspan="3" style="text-indent:2em" , 4883.1(4) keV , 515(1) ns , IT , 94Pd , (14+) , , , -id=Palladium-94m2 , style="text-indent:1em" , 94m2Pd , colspan="3" style="text-indent:2em" , 7209.8(8) keV , 206(18) ns , IT , 94Pd , (19−) , , , -id=Palladium-95 , rowspan=2, 95Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 49 , rowspan=2, 94.9248885(33) , rowspan=2, 7.4(4) s , β+ (99.77%) , 95Rh , rowspan=2, 9/2+# , rowspan=2, , rowspan=2, , - , β+, p (0.23%) , 94Ru , -id=Palladium-95m , rowspan=3 style="text-indent:1em" , 95mPd , rowspan=3 colspan="3" style="text-indent:2em" , 1875.13(14) keV , rowspan=3, 13.3(2) s , β+ (88%) , 95Rh , rowspan=3, (21/2+) , rowspan=3, , rowspan=3, , - , IT (11%) , 95Pd , - , β+, p (0.71%) , 94Ru , -id=Palladium-96 , 96Pd , style="text-align:right" , 46 , style="text-align:right" , 50 , 95.9182137(45) , 122(2) s , β+ , 96Rh , 0+ , , , -id=Palladium-96m , style="text-indent:1em" , 96mPd , colspan="3" style="text-indent:2em" , 2530.57(23) keV , 1.804(7) μs , IT , 96Pd , 8+# , , , -id=Palladium-97 , 97Pd , style="text-align:right" , 46 , style="text-align:right" , 51 , 96.9164720(52) , 3.10(9) min , β+ , 97Rh , 5/2+# , , , -id=Palladium-98 , 98Pd , style="text-align:right" , 46 , style="text-align:right" , 52 , 97.9126983(51) , 17.7(4) min , β+ , 98Rh , 0+ , , , -id=Palladium-99 , 99Pd , style="text-align:right" , 46 , style="text-align:right" , 53 , 98.9117731(55) , 21.4(2) min , β+ , 99Rh , (5/2)+ , , , -id=Palladium-100 , 100Pd , style="text-align:right" , 46 , style="text-align:right" , 54 , 99.908520(19) , 3.63(9) d , EC , 100Rh , 0+ , , , -id=Palladium-101 , 101Pd , style="text-align:right" , 46 , style="text-align:right" , 55 , 100.9082848(49) , 8.47(6) h , β+ , 101Rh , 5/2+ , , , -id=Palladium-102 , 102Pd , style="text-align:right" , 46 , style="text-align:right" , 56 , 101.90563229(45) , colspan=3 align=center,
Observationally Stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
Believed to decay by β+β+ to 102Ru with a half-life over 7.6×1018 y , 0+ , 0.0102(1) , , - , 103Pd , style="text-align:right" , 46 , style="text-align:right" , 57 , 102.90611107(94) , 16.991(19) d , EC , 103Rh , 5/2+ , , , -id=Palladium-104 , 104Pd , style="text-align:right" , 46 , style="text-align:right" , 58 , 103.9040304(14) , colspan=3 align=center, Stable , 0+ , 0.1114(8) , , -id=Palladium-105 , 105Pd
Fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
, style="text-align:right" , 46 , style="text-align:right" , 59 , 104.9050795(12) , colspan=3 align=center, Stable , 5/2+ , 0.2233(8) , , -id=Palladium-105m , style="text-indent:1em" , 105mPd , colspan="3" style="text-indent:2em" , 489.1(3) keV , 35.5(5) μs , IT , 105Pd , 11/2− , , , -id=Palladium-106 , 106Pd , style="text-align:right" , 46 , style="text-align:right" , 60 , 105.9034803(12) , colspan=3 align=center, Stable , 0+ , 0.2733(3) , , - , 107Pd
Long-lived fission product Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from hum ...
, style="text-align:right" , 46 , style="text-align:right" , 61 , 106.9051281(13) , 6.5(3)×106 y , β , 107Ag , 5/2+ , trace
Cosmogenic Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an ''in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ( ...
nuclide, also found as nuclear contamination
, , -id=Palladium-107m1 , style="text-indent:1em" , 107m1Pd , colspan="3" style="text-indent:2em" , 115.74(12) keV , 0.85(10) μs , IT , 107Pd , 1/2+ , , , -id=Palladium-107m2 , style="text-indent:1em" , 107m2Pd , colspan="3" style="text-indent:2em" , 214.6(3) keV , 21.3(5) s , IT , 107Pd , 11/2− , , , -id=Palladium-108 , 108Pd , style="text-align:right" , 46 , style="text-align:right" , 62 , 107.9038918(12) , colspan=3 align=center, Stable , 0+ , 0.2646(9) , , -id=Palladium-109 , 109Pd , style="text-align:right" , 46 , style="text-align:right" , 63 , 108.9059506(12) , 13.59(12) h , β , 109Ag , 5/2+ , , , -id=Palladium-109m1 , style="text-indent:1em" , 109m1Pd , colspan="3" style="text-indent:2em" , 113.4000(14) keV , 380(50) ns , IT , 109Pd , 1/2+ , , , -id=Palladium-109m2 , style="text-indent:1em" , 109m2Pd , colspan="3" style="text-indent:2em" , 188.9903(10) keV , 4.703(9) min , IT , 109Pd , 11/2− , , , -id=Palladium-110 , 110Pd , style="text-align:right" , 46 , style="text-align:right" , 64 , 109.90517288(66) , colspan=3 align=center, Observationally StableBelieved to decay by ββ to 110Cd with a half-life over 2.9×1020 years , 0+ , 0.1172(9) , , -id=Palladium-111 , 111Pd , style="text-align:right" , 46 , style="text-align:right" , 65 , 110.90769036(79) , 23.56(9) min , β , 111Ag , 5/2+ , , , -id=Palladium-111m , rowspan=2 style="text-indent:1em" , 111mPd , rowspan=2 colspan="3" style="text-indent:2em" , 172.18(8) keV , rowspan=2, 5.563(13) h , IT (76.8%) , 111Pd , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , β (23.2%) , 111Ag , -id=Palladium-112 , 112Pd , style="text-align:right" , 46 , style="text-align:right" , 66 , 111.9073306(70) , 21.04(17) h , β , 112Ag , 0+ , , , -id=Palladium-113 , 113Pd , style="text-align:right" , 46 , style="text-align:right" , 67 , 112.9102619(75) , 93(5) s , β , 113Ag , (5/2+) , , , -id=Palladium-113m , style="text-indent:1em" , 113mPd , colspan="3" style="text-indent:2em" , 81.1(3) keV , 0.3(1) s , IT , 113Pd , (9/2−) , , , -id=Palladium-114 , 114Pd , style="text-align:right" , 46 , style="text-align:right" , 68 , 113.9103694(75) , 2.42(6) min , β , 114Ag , 0+ , , , -id=Palladium-115 , 115Pd , style="text-align:right" , 46 , style="text-align:right" , 69 , 114.9136650(19) , 25(2) s , β , 115Ag , (1/2)+ , , , -id=Palladium-115m , rowspan=2 style="text-indent:1em" , 115mPd , rowspan=2 colspan="3" style="text-indent:2em" , 86.8(29) keV , rowspan=2, 50(3) s , β (92.0%) , 115Ag , rowspan=2, (7/2−) , rowspan=2, , rowspan=2, , - , IT (8.0%) , 115Pd , -id=Palladium-116 , 116Pd , style="text-align:right" , 46 , style="text-align:right" , 70 , 115.9142979(77) , 11.8(4) s , β , 116Ag , 0+ , , , -id=Palladium-117 , 117Pd , style="text-align:right" , 46 , style="text-align:right" , 71 , 116.9179556(78) , 4.3(3) s , β , 117Ag , (3/2+) , , , -id=Palladium-117m , style="text-indent:1em" , 117mPd , colspan="3" style="text-indent:2em" , 203.3(3) keV , 19.1(7) ms , IT , 117Pd , (9/2−) , , , -id=Palladium-118 , 118Pd , style="text-align:right" , 46 , style="text-align:right" , 72 , 117.9190673(27) , 1.9(1) s , β , 118Ag , 0+ , , , -id=Palladium-119 , rowspan=2, 119Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 73 , rowspan=2, 118.9231238(45) , rowspan=2, 0.88(2) s , β , 119Ag , rowspan=2, 1/2+, 3/2+ , rowspan=2, , rowspan=2, , - , β, n? , 118Ag , -id=Palladium-119m , style="text-indent:1em" , 119mPd , colspan="3" style="text-indent:2em" , 199.1(30) keV , 0.85(1) s , IT , 119Pd , (11/2−) , , , -id=Palladium-120 , rowspan=2, 120Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 74 , rowspan=2, 119.9245517(25) , rowspan=2, 492(33) ms , β (>99.3%) , 120Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (<0.7%) , 119Ag , -id=Palladium-121 , rowspan=2, 121Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 75 , rowspan=2, 120.9289513(40) , rowspan=2, 290(1) ms , β (>99.2%) , 121Ag , rowspan=2, 3/2+# , rowspan=2, , rowspan=2, , - , β, n (<0.8%) , 120Ag , -id=Palladium-121m1 , style="text-indent:1em" , 121m1Pd , colspan="3" style="text-indent:2em" , 135.5(5) keV , 460(90) ns , IT , 121Pd , 7/2+# , , , -id=Palladium-121m2 , style="text-indent:1em" , 121m2Pd , colspan="3" style="text-indent:2em" , 160(14) keV , 460(90) ns , IT , 121Pd , 11/2−# , , , -id=Palladium-122 , rowspan=2, 122Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 76 , rowspan=2, 121.930632(21) , rowspan=2, 193(5) ms , β , 122Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (<2.5%) , 121Ag , -id=Palladium-123 , rowspan=2, 123Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 77 , rowspan=2, 122.93513(85) , rowspan=2, 108(1) ms , β (90%) , 123Ag , rowspan=2, 3/2+# , rowspan=2, , rowspan=2, , - , β, n (10%) , 122Ag , -id=Palladium-123m , rowspan=2 style="text-indent:1em" , 123mPd , rowspan=2 colspan="3" style="text-indent:2em" , 100(50)# keV , rowspan=2, 100# ms , β , 123Ag , rowspan=2, 11/2−# , rowspan=2, , rowspan=2, , - , IT? , 123Pd , -id=Palladium-124 , rowspan=2, 124Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 78 , rowspan=2, 123.93731(32)# , rowspan=2, 88(15) ms , β (83%) , 124Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (17%) , 123Ag , -id=Palladium-124m , style="text-indent:1em" , 124mPd , colspan="3" style="text-indent:2em" , 1000(800)# keV , >20 μs , IT , 124Pd , 11/2−# , , , -id=Palladium-125 , rowspan=2, 125Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 79 , rowspan=2, 124.94207(43)# , rowspan=2, 60(6) ms , β (88%) , 125Ag , rowspan=2, 3/2+# , rowspan=2, , rowspan=2, , - , β, n (12%) , 124Ag , -id=Palladium-125m1 , rowspan=2 style="text-indent:1em" , 125m1Pd , rowspan=2 colspan="3" style="text-indent:2em" , 100(50)# keV , rowspan=2, 50# ms , β , 125Ag , rowspan=2, 11/2−# , rowspan=2, , rowspan=2, , - , IT? , 125Pd , -id=Palladium-125m2 , style="text-indent:1em" , 125m2Pd , colspan="3" style="text-indent:2em" , 1805.23(18) keV , 144(4) ns , IT , 125Pd , (23/2+) , , , -id=Palladium-126 , rowspan=2, 126Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 80 , rowspan=2, 125.94440(43)# , rowspan=2, 48.6(8) ms , β (78%) , 126Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (22%) , 125Ag , -id=Palladium-126m1 , style="text-indent:1em" , 126m1Pd , colspan="3" style="text-indent:2em" , 2023.5(7) keV , 330(40) ns , IT , 126Pd , (5−) , , , -id=Palladium-126m2 , style="text-indent:1em" , 126m2Pd , colspan="3" style="text-indent:2em" , 2109.7(9) keV , 440(30) ns , IT , 126Pd , (7−) , , , -id=Palladium-126m3 , rowspan=2 style="text-indent:1em" , 126m3Pd , rowspan=2 colspan="3" style="text-indent:2em" , 2406.0(10) keV , rowspan=2, 23.0(8) ms , β (72%) , 126Ag , rowspan=2, (10+) , rowspan=2, , rowspan=2, , - , IT (28%) , 126Pd , -id=Palladium-127 , rowspan=3, 127Pd , rowspan=3 style="text-align:right" , 46 , rowspan=3 style="text-align:right" , 81 , rowspan=3, 126.94931(54)# , rowspan=3, 38(2) ms , β (>81%) , 127Ag , rowspan=3, 11/2−# , rowspan=3, , rowspan=3, , - , β, n (<19%) , 126Ag , - , β, 2n? , 125Ag , -id=Palladium-127m , style="text-indent:1em" , 127mPd , colspan="3" style="text-indent:2em" , 1717.91(23) keV , 39(6) μs , IT , 127Pd , (19/2+) , , , -id=Palladium-128 , rowspan=2, 128Pd , rowspan=2 style="text-align:right" , 46 , rowspan=2 style="text-align:right" , 82 , rowspan=2, 127.95235(54)# , rowspan=2, 35(3) ms , β , 128Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n? , 127Ag , -id=Palladium-128m , style="text-indent:1em" , 128mPd , colspan="3" style="text-indent:2em" , 2151.0(10) keV , 5.8(8) μs , IT , 128Pd , (8+) , , , -id=Palladium-129 , rowspan=3, 129Pd , rowspan=3 style="text-align:right" , 46 , rowspan=3 style="text-align:right" , 83 , rowspan=3, 128.95933(64)# , rowspan=3, 31(7) ms , β , 129Ag , rowspan=3, 7/2−# , rowspan=3, , rowspan=3, , - , β, n? , 128Ag , - , β, 2n? , 127Ag , -id=Palladium-130 , rowspan=3, 130Pd , rowspan=3 style="text-align:right" , 46 , rowspan=3 style="text-align:right" , 84 , rowspan=3, 129.96486(32)# , rowspan=3, 27# ms
550 ns, β , 130Ag , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β, n? , 129Ag , - , β, 2n? , 128Ag , -id=Palladium-131 , rowspan=3, 131Pd , rowspan=3 style="text-align:right" , 46 , rowspan=3 style="text-align:right" , 85 , rowspan=3, 130.97237(32)# , rowspan=3, 20# ms
550 ns, β , 131Ag , rowspan=3, 7/2−# , rowspan=3, , rowspan=3, , - , β, n? , 130Ag , - , β, 2n? , 129Ag


Palladium-103

Palladium-103 is a
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
of the element
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
that has uses in
brachytherapy Brachytherapy is a form of radiation therapy where a sealed radiation, radiation source is placed inside or next to the area requiring treatment. The word "brachytherapy" comes from the Ancient Greek, Greek word , meaning "short-distance" or "s ...
for
prostate cancer Prostate cancer is the neoplasm, uncontrolled growth of cells in the prostate, a gland in the male reproductive system below the bladder. Abnormal growth of the prostate tissue is usually detected through Screening (medicine), screening tests, ...
and
uveal melanoma Uveal melanoma is a type of eye cancer in the uvea of the eye. It is traditionally classed as originating in the iris, choroid, and ciliary body, but can also be divided into class I (low metastatic risk) and class II (high metastatic risk). S ...
. Palladium-103 may be created from palladium-102 or from rhodium-103 using a
cyclotron A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
. Palladium-103 has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 16.99 days and decays by
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
to an excited state of rhodium-103, which undergoes
internal conversion Internal conversion is an atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion (o ...
to eject an electron. The resulting electron vacancy leads to emission of characteristic X-rays with 20–23 keV of energy.


Palladium-107

Palladium-107 is the second-longest lived (
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 6.5 million years) and least radioactive (
decay energy The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energ ...
only 33 
keV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
,
specific activity Specific activity (symbol ''a'') is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activi ...
5 Ci/g) of the 7 long-lived
fission products Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
. It undergoes pure
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
(without
gamma radiation A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
) to 107Ag, which is stable. Its yield from
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wit ...
fission of
uranium-235 Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
is 0.14% per fission, only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%.
Fast fission Fast fission is fission that occurs when a heavy atom absorbs a high-energy neutron, called a fast neutron, and splits. Most fissionable materials need thermal neutrons, which move more slowly. Fast reactors vs. thermal reactors Fast neutron r ...
or fission of some heavier
actinides The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
'' hich?' will produce palladium-107 at higher yields. One source estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U). Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by
nuclear transmutation Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutat ...
. However, as a
noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
, palladium is not as mobile in the environment as iodine or technetium.


See also

Daughter products other than palladium *
Isotopes of silver Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istope ...
* Isotopes of rhodium * Isotopes of ruthenium


References


Patent application for Palladium-103 implantable radiation-delivery device
(accessed 12/7/05) * Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Palladium
Palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...