HOME

TheInfoList



OR:

In functional analysis a partial isometry is a linear map between Hilbert spaces such that it is an isometry on the orthogonal complement of its kernel. The orthogonal complement of its kernel is called the initial subspace and its range is called the final subspace. Partial isometries appear in the polar decomposition.


General

The concept of partial isometry can be defined in other equivalent ways. If ''U'' is an isometric map defined on a closed subset ''H''1 of a Hilbert space ''H'' then we can define an extension ''W'' of ''U'' to all of ''H'' by the condition that ''W'' be zero on the orthogonal complement of ''H''1. Thus a partial isometry is also sometimes defined as a closed partially defined isometric map. Partial isometries (and projections) can be defined in the more abstract setting of a
semigroup with involution In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered ...
; the definition coincides with the one herein. In finite-dimensional vector spaces, a matrix A is a partial isometry if and only if A^* A is the projection onto its support. Equivalently, any finite-dimensional partial isometry can be represented, in some choice of basis, as a matrix of the form A=\beginV & 0\end, that is, as a matrix whose first \operatorname(A) columns form an isometry, while all the other columns are identically 0. Yet another general way to characterize finite-dimensional partial isometries is to observe that partial isometries coincide with the Hermitian conjugates of isometries, meaning that a given P is a partial isometry if and only if P^* is an isometry. More precisely, if P is a partial isometry, then P^* is an isometry with support the range of P, and if V is some isometry, then V^* is a partial isometry with support the range of V.


Operator Algebras

For operator algebras one introduces the initial and final subspaces: :\mathcalW:=\mathcalW^*W,\,\mathcalW:=\mathcalWW^*


C*-Algebras

For
C*-algebra In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous ...
s one has the chain of equivalences due to the C*-property: :(W^*W)^2=W^*W\iff WW^*W=W\iff W^*WW^*=W^*\iff(WW^*)^2=WW^* So one defines partial isometries by either of the above and declares the initial resp. final projection to be W*W resp. WW*. A pair of projections are partitioned by the
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
: :P=W^*W,\,Q=WW^* It plays an important role in K-theory for C*-algebras and in the Murray- von Neumann theory of projections in a von Neumann algebra.


Special Classes


Projections

Any orthogonal projection is one with common initial and final subspace: :P:\mathcal\rightarrow\mathcal:\quad\mathcalP=\mathcalP


Embeddings

Any isometric embedding is one with full initial subspace: :J:\mathcal\hookrightarrow\mathcal:\quad\mathcalJ=\mathcal


Unitaries

Any unitary operator is one with full initial and final subspace: :U:\mathcal\leftrightarrow\mathcal:\quad\mathcalU=\mathcal,\,\mathcalU=\mathcal ''(Apart from these there are far more partial isometries.)''


Examples


Nilpotents

On the two-dimensional complex Hilbert space the matrix : \begin0 & 1 \\ 0 & 0 \end is a partial isometry with initial subspace : \ \oplus \mathbb and final subspace : \mathbb \oplus \.


Generic finite-dimensional examples

Other possible examples in finite dimensions areA\equiv \begin1&0&0\\0&\frac1&\frac1\\0&0&0\end.This is clearly not an isometry, because the columns are not orthonormal. However, its support is the span of \mathbf e_1\equiv (1,0,0) and \mathbf e_2+\mathbf e_3\equiv (0,1,1), and restricting the action of A on this space, it becomes an isometry (and in particular a unitary). One can similarly verify that A^* A= \Pi_, that is, that A^* A is the projection onto its support. Partial isometries need not correspond to squared matrices. Consider for example,A\equiv \begin1&0&0\\0&\frac12&\frac12\\ 0 & 0 & 0 \\ 0& \frac12 & \frac12\end.This matrix has support the span of \mathbf e_1\equiv (1,0,0,0) and \mathbf e_2+\mathbf e_4\equiv (0,1,0,1), and acts as an isometry (and in particular, as the identity) on this space. Yet another example, in which this time A acts like a non-trivial isometry on its support, isA = \begin0 & \frac1 & \frac1 \\ 1&0&0\\0&0&0\end.One can readily verify that A\mathbf e_1=\mathbf e_2, and A \left(\frac\right) = \mathbf e_1, showing the isometric behavior of A between its support \operatorname(\) and its range \operatorname(\).


Leftshift and Rightshift

On the square summable sequences the operators :R:\ell^2(\mathbb)\to\ell^2(\mathbb):(x_1,x_2,\ldots)\mapsto(0,x_1,x_2,\ldots) :L:\ell^2(\mathbb)\to\ell^2(\mathbb):(x_1,x_2,\ldots)\mapsto(x_2,x_3,\ldots) which are related by :R^*=L are partial isometries with initial subspace :LR(x_1,x_2,\ldots)=(x_1,x_2,\ldots) and final subspace: :RL(x_1,x_2,\ldots)=(0,x_2,\ldots).


References

*John B. Conway (1999). "A course in operator theory", AMS Bookstore, * *Alan L. T. Paterson (1999).
Groupoids, inverse semigroups, and their operator algebras
, Springer, *Mark V. Lawson (1998).
Inverse semigroups: the theory of partial symmetries
. World Scientific *


External links


Important properties and proofsAlternative proofs
{{DEFAULTSORT:Partial Isometry Operator theory C*-algebras Semigroup theory