Summary
The Parker–Sochacki method rests on two simple observations: * If a set of ODEs has a particular form, then the Picard method can be used to find their solution in the form of aAdvantages
The method requires only addition, subtraction, and multiplication, making it very convenient for high-speed computation. (The only divisions are inverses of small integers, which can be precomputed.) Use of a high order—calculating many coefficients of the power series—is convenient. (Typically a higher order permits a longer time step without loss of accuracy, which improves efficiency.) The order and step size can be easily changed from one step to the next. It is possible to calculate a guaranteed error bound on the solution. Arbitrary precision floating point libraries allow this method to compute arbitrarily accurate solutions. With the Parker–Sochacki method, information between integration steps is developed at high order. As the Parker–Sochacki method integrates, the program can be designed to save the power series coefficients that provide a smooth solution between points in time. The coefficients can be saved and used so that polynomial evaluation provides the high order solution between steps. With most other classical integration methods, one would have to resort to interpolation to get information between integration steps, leading to an increase of error. There is an A-priori error bound for a single step with the Parker–Sochacki method. This allows a Parker–Sochacki program to calculate the step size that guarantees that the error is below any non-zero given tolerance. Using this calculated step size with an error tolerance of less than half of the machine epsilon yields a symplectic integration.Disadvantages
Most methods for numerically solving ODEs require only the evaluation of derivatives for chosen values of the variables, so systems like MATLAB include implementations of several methods all sharing the same calling sequence. Users can try different methods by simply changing the name of the function called. The Parker–Sochacki method requires more work to put the equations into the proper form, and cannot use the same calling sequence.References
External links
* . A thorough explanation of the paradigm and application of the Parker–Sochacki method * . A demonstration of the theory and usage of the Parker–Sochacki method, including a solution for the classical Newtonian ''N''-body problem with mutual gravitational attraction. * . A collection of papers and some Matlab code. {{DEFAULTSORT:Parker-Sochacki method Mathematical analysis