In
mathematics, a differentiable manifold
of dimension ''n'' is called parallelizable if there exist
smooth vector fields
on the manifold, such that at every point
of
the
tangent vector
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are ele ...
s
provide a
basis of the
tangent space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
at
. Equivalently, the
tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
is a
trivial bundle, so that the associated
principal bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
of
linear frames has a global section on
A particular choice of such a basis of vector fields on
is called a
parallelization
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different f ...
(or an absolute parallelism) of
.
Examples
*An example with
is the
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
: we can take ''V''
1 to be the unit tangent vector field, say pointing in the anti-clockwise direction. The
torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle.
If the axis of revolution does not ...
of dimension
is also parallelizable, as can be seen by expressing it as a
cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ ...
of circles. For example, take
and construct a torus from a square of
graph paper
Graph paper, coordinate paper, grid paper, or squared paper is writing paper that is printed with fine lines making up a regular grid. The lines are often used as guides for plotting graphs of functions or experimental data and drawing curves. ...
with opposite edges glued together, to get an idea of the two tangent directions at each point. More generally, every
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addit ...
''G'' is parallelizable, since a basis for the tangent space at the
identity element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures s ...
can be moved around by the action of the translation group of ''G'' on ''G'' (every translation is a diffeomorphism and therefore these translations induce linear isomorphisms between tangent spaces of points in ''G'').
*A classical problem was to determine which of the
sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s ''S''
''n'' are parallelizable. The zero-dimensional case ''S''
0 is trivially parallelizable. The case ''S''
1 is the circle, which is parallelizable as has already been explained. The
hairy ball theorem
The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous tangent vector field on even-dimensional ''n''-spheres. For the ordinary sphere, or 2‑sphere, ...
shows that ''S''
2 is not parallelizable. However ''S''
3 is parallelizable, since it is the Lie group
SU(2)
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1.
The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the speci ...
. The only other parallelizable sphere is ''S''
7; this was proved in 1958, by
Friedrich Hirzebruch
Friedrich Ernst Peter Hirzebruch ForMemRS (17 October 1927 – 27 May 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure in his generation. He has been described a ...
,
Michel Kervaire, and by
Raoul Bott
Raoul Bott (September 24, 1923 – December 20, 2005) was a Hungarian- American mathematician known for numerous basic contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions whi ...
and
John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Un ...
, in independent work. The parallelizable spheres correspond precisely to elements of unit norm in the
normed division algebras of the real numbers, complex numbers,
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quat ...
s, and
octonion
In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions hav ...
s, which allows one to construct a parallelism for each. Proving that other spheres are not parallelizable is more difficult, and requires
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
.
*The product of parallelizable
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
s is parallelizable.
*Every
orientable
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space ...
closed three-dimensional manifold is parallelizable.
Remarks
*Any parallelizable
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
is
orientable
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space ...
.
*The term ''
framed manifold
In mathematics, a differentiable manifold M of dimension ''n'' is called parallelizable if there exist smooth vector fields
\
on the manifold, such that at every point p of M the tangent vectors
\
provide a basis of the tangent space at p. Equ ...
'' (occasionally ''
rigged manifold'') is most usually applied to an embedded manifold with a given trivialisation of the
normal bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion).
Definition
Riemannian manifold
Let (M,g) be a Riemann ...
, and also for an abstract (that is, non-embedded) manifold with a given stable trivialisation of the
tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
.
*A related notion is the concept of a π-manifold.
A smooth manifold
is called a
π-manifold if, when embedded in a high dimensional euclidean space, its normal bundle is trivial. In particular, every parallelizable manifold is a π-manifold.
See also
*
Chart (topology)
In mathematics, particularly topology, one describes a manifold using an atlas. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an ...
*
Differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
*
Frame bundle
In mathematics, a frame bundle is a principal fiber bundle F(''E'') associated to any vector bundle ''E''. The fiber of F(''E'') over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E'x''. The general linear group acts na ...
*
Kervaire invariant
*
Orthonormal frame bundle
*
Principal bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
*
Connection (mathematics)
*
G-structure
In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''.
The notion of ''G''-structures includes vari ...
Notes
References
*
*
*
{{Manifolds
Differential topology
Fiber bundles
Manifolds
Vector bundles