HOME

TheInfoList



OR:

ParM is a
prokaryotic A prokaryote (; less commonly spelled procaryote) is a single-celled organism whose cell lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Greek (), meaning 'before', and (), meaning 'nut' ...
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
homologue which provides the force to drive copies of the R1 plasmid to opposite ends of rod shaped
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
before
cytokinesis Cytokinesis () is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division ...
. ParM is a
monomer A monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called polymerization. Classification Chemis ...
that is encoded in the
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
of the R1 plasmid and manufactured by the host cell's
ribosomes Ribosomes () are macromolecular machines, found within all cells, that perform biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA molecules to fo ...
. In the cytoplasm it spontaneously
polymerizes In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many form ...
forming short strands that either bind to ParR or
hydrolyze Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
. ParR stabilizes ParM and prevents it from hydrolyzing. Once bound by ParR at both ends, monomer units continue to attach to the ends of the ParM and the resulting reaction pushes R1 plasmids to opposite ends of the cell. ParMs from different bacterial plasmids can form astonishingly diverse helical structures comprising two or four strands to maintain faithful plasmid inheritance.


Action

In vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
the ParM monomer has been observed polymerizing both with ATP and with GTP, but experiments by Popp et al. seem to indicate that the reaction "prefers" GTP and that GTP is the nucleotide that most likely makes the significant contributions in the cell. For the remainder of this article GTP will be assumed to be the active nucleotide although many experiments have used ATP instead. ParM binds and
hydrolyzes Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
GTP as it
polymerizes In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many form ...
. The current dominant belief is that a "cap" of GTP is required at the ends of the ParM polymer strands to prevent them from hydrolyzing. Although GTP is hydrolyzed by the ParM units after attachment, it is believed that the energy that drives the plasmids is derived from the
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
of the ParM monomer concentrations, and not the energy released from GTP hydrolysis. The concentrations of ParM monomer and polymer must be kept out of equilibrium at the ends where attachment is occurring for the reaction to proceed regardless of GTP concentrations. Once the ParM has pushed plasmids to opposite ends of the cell the polymer rapidly depolymerizes—returning the monomer units to the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
.


Structure

The ParM monomer unit is non-functional before binding a GTP nucleotide. Once the GTP has been bound it can attach to the end of a growing filament. At some point after attachment the ParM hydrolyzes GTP which becomes GDP and remains in the ParM subunit as long as the polymer strand remains intact. ParM forms a left-handed
helix A helix (; ) is a shape like a cylindrical coil spring or the thread of a machine screw. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is for ...
structure. A study by Garner and Campbell has suggested that the unit at the end of the ParM strand must have GTP bound to maintain the stability of the polymer. If one of the ends has the GDP bound version the polymer strand depolymerizes very quickly into its constituent monomer units. This is suggested by their experiment in which they cut growing ParM polymer strands exposing ADP bound ends. Once cut the strands quickly hydrolyzed.


Dynamic Instability

Dynamic instability is described as the switching of a polymer between phases of steady elongation and rapid shortening. This process is essential to the function of eukaryotic
microtubule Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nanometer, nm and have an inner diameter bet ...
s. In ParM, dynamic instability "rescue" or the switch from a shortening phase back to the elongation phase has very rarely been observed, and only when the ATP nucleotide is used. Unbound ParM filaments are found with a typical average length of 1.5 – 2 μm, when the ParM monomer concentrations are 2 μM or more. The dynamic instability of ParM and eukaryotic microtubules is believed to be an example of
convergent evolution Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last comm ...
. L ParM spontaneously forms short polymer segments when it is present in the cytoplasm. These segments serve to very efficiently "search" for the R1 plasmids, and also maintains a favorable concentration of ParM monomer units for polymerization.


References

{{Cytoskeletal proteins Structural proteins Cytoskeleton