Palifermin
   HOME

TheInfoList



OR:

Palifermin (trade name Kepivance, marketed by Biovitrum) is a truncated human recombinant
keratinocyte growth factor The keratinocyte growth factor (KGF), also known as FGF7, is a growth factor present in the epithelialization-phase of wound healing. In this phase, keratinocytes are covering the wound, forming the epithelium. KGF is a small signaling molecule ...
(KGF) produced in ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
''. KGF stimulates the growth of cells that line the surface of the
mouth A mouth also referred to as the oral is the body orifice through which many animals ingest food and animal communication#Auditory, vocalize. The body cavity immediately behind the mouth opening, known as the oral cavity (or in Latin), is also t ...
and
intestinal tract The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The tract is the largest of the body's systems, after the cardiovascular system. ...
.Kepivance
entry in the public domain NCI Dictionary of Cancer Terms


Therapeutic use(s)

When patients with
blood cancer Tumors of the hematopoietic and lymphoid tissues (American English) or tumours of the haematopoietic and lymphoid tissues (British English) are tumors that affect the blood, bone marrow, lymph, and lymphatic system. Because these tissues are al ...
s (
leukemia Leukemia ( also spelled leukaemia; pronounced ) is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or '' ...
and
lymphoma Lymphoma is a group of blood and lymph tumors that develop from lymphocytes (a type of white blood cell). The name typically refers to just the cancerous versions rather than all such tumours. Signs and symptoms may include enlarged lymph node ...
) receive high dose
chemotherapy Chemotherapy (often abbreviated chemo, sometimes CTX and CTx) is the type of cancer treatment that uses one or more anti-cancer drugs (list of chemotherapeutic agents, chemotherapeutic agents or alkylating agents) in a standard chemotherapy re ...
and
radiation therapy Radiation therapy or radiotherapy (RT, RTx, or XRT) is a therapy, treatment using ionizing radiation, generally provided as part of treatment of cancer, cancer therapy to either kill or control the growth of malignancy, malignant cell (biology), ...
to undergo
bone marrow transplant Hematopoietic stem-cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood, in order to replicate inside a patient and produce a ...
ation, they usually get severe oral mucositis. Palifermin reduces the incidence and duration of severe oral mucositis by protecting those cells and stimulating the growth of new epithelial cells to build up the mucosal barrier. Palifermin is also being studied in the prevention and treatment of oral mucositis and
dysphagia Dysphagia is difficulty in swallowing. Although classified under " symptoms and signs" in ICD-10, in some contexts it is classified as a condition in its own right. It may be a sensation that suggests difficulty in the passage of solids or l ...
(difficulty swallowing) in other types of cancer.


Drug target and mechanism of action

Keratinocyte growth factor (KGF) resides in the family of fibroblast growth factor (FGF). The drug's target is the KGF receptor. Through the binding of this drug to the aforementioned receptor, Palifermin stimulates epithelial cell proliferation, differentiation, and upregulation of cytoprotective mechanisms to reduce the symptoms of oral mucositis.


Side effects

Common side effects often seen in conjunction with the use of Palifermin include, but are not limited to: Some of the more serious side effects can be seen below:


Administration

Palifermin is administered via intravenous bolus injection. The drug comes as a lyophilized powder that must be reconstituted with sterile water for injection before it may be administered. It is given for three days before, and three days after chemotherapy is undergone. However, it is important that the drug is not administered within 24 hours of the actual chemotherapy process. This drug is most commonly dosed in a hospital setting, but can be taken at home as per specific instructions regarding preparation and storage from a doctor. The recommended dosage consists of 60 μg/kg/day.


Drug interactions

Co-administration of Palifermin with Heparin should be avoided. Drug interactions with Heparin include a significantly increased systemic exposure to Palifermin. Avoid administration of Palifermin within 24 hours of myelotoxic chemotherapy, as this could result in increased oral mucositis.


Pre-clinical trials


Toxicology studies

Toxicology studies were conducted by use of animal models, utilizing a variety of species, including mice, rats, and monkeys. Singles doses in rats and monkeys were given up to 30,000 and 50,000 micrograms/kg, respectively. Daily doses of 1,000 and 300 micrograms/kg, respectively, were given to rats and monkeys for 28 consecutive days. Toxic effects noted included exaggerated pharmacological effects of the drug, such as hyperkeratosis of skin and tongue and goblet cell hyperplasia in the GI tract. It was noted that the rats were more sensitive to these effects than the monkeys. Induced genetic abnormality assays including microchromosome reverse mutation and E. coli mutagenicity assays were completed using mice. There were no genotoxic effects noted from this study.


Clinical trials


Phase I

* Study 950170: The first in human study included administration via the subcutaneous route. This study was ended early due to the large number of adverse reactions observed around/in the injection site. * Study 960136: (Dose-escalation). Intended to determine safety and tolerability, biologic activity, and pharmacokinetic profile in 61 healthy volunteers. The study included a single dose as well as a combination of 3 daily doses (ranging from 0.2 to 20 micrograms/kg) given consecutively. It was determined that single doses did not result in noteworthy production of epithelial cells. * Study 970136 (Randomized, double-blind, placebo-controlled, dose-escalation). Intended to determine the safety and tolerability, and pharmacokinetics of a single dose, administered intravenously (ranging from 5–20 micrograms/kg) in 24 healthy volunteers. It was found that systematic exposure was proportional to the administered dose. Extravascular distribution of the drug was noted. * Study 970290 (Open-label). Intended to evaluate pharmacokinetic properties intersubject variability of the drug in four, healthy male volunteers. It was determined that a high intersubject variability was not the cause of dosing errors in previous studies. * Study 970276 (Dose-escalation). Intended to determine the safety and tolerability, pharmacokinetic and pharmacodynamics properties of the drug versus a placebo in 18 healthy volunteers. The study consisted of daily IV doses in three consecutive days (20 or 40 micrograms/kg). It was determined that subjects that received three daily doses of 40 micrograms/kg demonstrated adequate production of epithelial cells in the buccal mucosa. Predicted elevation in amylase and lipase were also determined. * Study 20010192 (Randomized, double-blind, placebo-controlled, dose-escalation). Intended to determine safety and tolerability, pharmacokinetic and pharmacodynamics properties of the drug versus a placebo by utilization of a single IV dose (ranging from 60 to 250 micrograms/kg) in 84 healthy volunteers. It was determined that after the first 30 minutes (after IV dose was administered) a rapid decline in concentration occurred, followed by a subsequent plateau once 1.5 hours had been achieved. A decline in concentration was consistently observed once six hours post-dose had been reached. It was also noted that with a four-fold increase in dose, a three-fold increase in AUC was achieved. Half-life values of 4–6 hours were noted; extravascular distribution of the drug was noted as well.


Phase II

* Study 980231 (Randomized, double-blind, placebo-controlled). Three dose regimens were included: "pre-post", "pre", and placebo Palifermin administration (60 micrograms/kg) by IV for three consecutive days before chemotherapy and after autologous peripheral blood progenitor cell (PBPC). Efficacy was demonstrated in the drug versus the placebo.


Phase III

* Study 2000162 (Randomized, double-blind, placebo-controlled). Intended to evaluate Palifermin efficacy in reducing oral mucositis in subjects with hematologic malignancy undergoing chemotherapy with autologous peripheral blood progenitor cell transplantation. Patients were administered with 3 daily, consecutive IV doses (or placebo) of Palifermin (60 micrograms/kg) before chemotherapy and Filgrastim (60 micrograms/kg) was administered after transplantation for three days consecutively. Efficacy was demonstrated in the drug versus the placebo.


Costs

Palifermin costs approximately 5,000 euros per treatment for a 70 kg patient.NEW DRUGS in TRANSPLANTATION
, EBMT Meeting, France, March 2007 C. PAILLET, Pharmacist, Pharm D. C. RENZULLO, Pharmacist, Pharm D. Edouard Herriot Hospital, Lyon, FRANCE


Annual sales

The worldwide profits for years the 2008–2011 are provided below. * 2008: $5.7 million * 2009: $109.9 million * 2010: $94.8 million * 2011: $77.9 million


References

*


External links


Kepivance homepage
{{Growth factor receptor modulators Growth factors