HOME

TheInfoList



OR:

In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
formal logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
is the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint.


Generalizations

This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a ''
family of sets In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F of subsets of a given set S is called a family of su ...
'' (such as the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
, for example). In some sources this is a set of sets, while other sources allow it to be a
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the ''multiplicity'' of ...
of sets, with some sets repeated. An \left(A_i\right)_, is by definition a set-valued
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
(that is, it is a function that assigns a set A_i to every element i \in I in its domain) whose domain I is called its (and elements of its domain are called ). There are two subtly different definitions for when a family of sets \mathcal is called pairwise disjoint. According to one such definition, the family is disjoint if each two sets in the family are either identical or disjoint. This definition would allow pairwise disjoint families of sets to have repeated copies of the same set. According to an alternative definition, each two sets in the family must be disjoint; repeated copies are not allowed. The same two definitions can be applied to an indexed family of sets: according to the first definition, every two distinct indices in the family must name sets that are disjoint or identical, while according to the second, every two distinct indices must name disjoint sets.. For example, the family of sets is disjoint according to both definitions, as is the family of the two parity classes of integers. However, the family (\)_ with 10 members has five repetitions each of two disjoint sets, so it is pairwise disjoint under the first definition but not under the second. Two sets are said to be almost disjoint sets if their intersection is small in some sense. For instance, two
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
s whose intersection is a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
may be said to be almost disjoint. In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, there are various notions of
separated sets In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets a ...
with more strict conditions than disjointness. For instance, two sets may be considered to be separated when they have disjoint closures or disjoint
neighborhoods A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
. Similarly, in a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
,
positively separated sets In mathematics, two non-empty subsets ''A'' and ''B'' of a given metric space (''X'', ''d'') are said to be positively separated if the infimum :\inf_ d(a, b) > 0. (Some authors also specify that ''A'' and ''B'' should be disjoint sets; how ...
are sets separated by a nonzero
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
.


Intersections

Disjointness of two sets, or of a family of sets, may be expressed in terms of intersections of pairs of them. Two sets ''A'' and ''B'' are disjoint if and only if their intersection A\cap B is the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
. It follows from this definition that every set is disjoint from the empty set, and that the empty set is the only set that is disjoint from itself. If a collection contains at least two sets, the condition that the collection is disjoint implies that the intersection of the whole collection is empty. However, a collection of sets may have an empty intersection without being disjoint. Additionally, while a collection of less than two sets is trivially disjoint, as there are no pairs to compare, the intersection of a collection of one set is equal to that set, which may be non-empty. For instance, the three sets have an empty intersection but are not disjoint. In fact, there are no two disjoint sets in this collection. The empty family of sets is pairwise disjoint. A
Helly family In combinatorics, a Helly family of order is a family of Set (mathematics), sets in which every minimal ''subfamily with an empty Intersection (set theory), intersection'' has or fewer sets in it. Equivalently, every finite subfamily such that ...
is a system of sets within which the only subfamilies with empty intersections are the ones that are pairwise disjoint. For instance, the
closed interval In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. A real in ...
s of the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s form a Helly family: if a family of closed intervals has an empty intersection and is minimal (i.e. no subfamily of the family has an empty intersection), it must be pairwise disjoint.


Disjoint unions and partitions

A
partition of a set In mathematics, a partition of a set is a grouping of its elements into Empty set, non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a Set (mathematics), set defines a partitio ...
''X'' is any collection of mutually disjoint non-empty sets whose union is ''X''., p. 28. Every partition can equivalently be described by an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
, a
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
that describes whether two elements belong to the same set in the partition.
Disjoint-set data structure In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that stores a collection of Disjoint sets, disjoint (non-overlapping) Set (mathematics), sets. Equivalently, it ...
s and partition refinement are two techniques in computer science for efficiently maintaining partitions of a set subject to, respectively, union operations that merge two sets or refinement operations that split one set into two. A
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
may mean one of two things. Most simply, it may mean the union of sets that are disjoint. But if two or more sets are not already disjoint, their disjoint union may be formed by modifying the sets to make them disjoint before forming the union of the modified sets. For instance two sets may be made disjoint by replacing each element by an ordered pair of the element and a binary value indicating whether it belongs to the first or second set. For families of more than two sets, one may similarly replace each element by an ordered pair of the element and the index of the set that contains it..


See also

*
Hyperplane separation theorem In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in ''n''-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least on ...
for disjoint convex sets *
Mutually exclusive events In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tail ...
*
Relatively prime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
, numbers with disjoint sets of prime divisors * Separoid *
Set packing Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set ''S'' and a list of subsets of ''S''. Then, the set packing problem as ...
, the problem of finding the largest disjoint subfamily of a family of sets


References


External links

* {{DEFAULTSORT:Disjoint Sets Basic concepts in set theory Families of sets