HOME

TheInfoList



OR:

A pairing heap is a type of heap
data structure In computer science, a data structure is a data organization and storage format that is usually chosen for Efficiency, efficient Data access, access to data. More precisely, a data structure is a collection of data values, the relationships amo ...
with relatively simple implementation and excellent practical
amortized In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case ...
performance, introduced by
Michael Fredman Michael Lawrence Fredman is an emeritus professor at the Computer Science Department at Rutgers University, United States. He earned his Ph.D. from Stanford University in 1972 under the supervision of Donald Knuth. He was a member of the mathemat ...
, Robert Sedgewick,
Daniel Sleator Daniel Dominic Kaplan Sleator (born 10 December 1953) is a professor of computer science at Carnegie Mellon University, Pittsburgh, United States. In 1999, he won the ACM Paris Kanellakis Award (jointly with Robert Tarjan) for the splay tree d ...
, and
Robert Tarjan Robert Endre Tarjan (born April 30, 1948) is an American computer scientist and mathematician. He is the discoverer of several graph theory algorithms, including his strongly connected components algorithm, and co-inventor of both splay trees a ...
in 1986. Pairing heaps are heap-ordered multiway tree structures, and can be considered simplified Fibonacci heaps. They are considered a "robust choice" for implementing such algorithms as Prim's MST algorithm, and support the following operations (assuming a min-heap): * ''find-min'': simply return the top element of the heap. * ''meld'': compare the two root elements, the smaller remains the root of the result, the larger element and its subtree is appended as a child of this root. * ''insert'': create a new heap for the inserted element and ''meld'' into the original heap. * ''decrease-key'' (optional): remove the subtree rooted at the key to be decreased, replace the key with a smaller key, then ''meld'' the result back into the heap. * ''delete-min'': remove the root and do repeated ''melds'' of its subtrees until one tree remains. Various merging strategies are employed. The analysis of pairing heaps' time complexity was initially inspired by that of
splay tree A splay tree is a binary search tree with the additional property that recently accessed elements are quick to access again. Like self-balancing binary search trees, a splay tree performs basic operations such as insertion, look-up and removal ...
s. The amortized time per ''delete-min'' is , and the operations ''find-min'', ''meld'', and ''insert'' run in time. When a ''decrease-key'' operation is added as well, determining the precise asymptotic running time of pairing heaps has turned out to be difficult. Initially, the time complexity of this operation was conjectured on empirical grounds to be , but Fredman proved that the amortized time per ''decrease-key'' is at least \Omega(\log\log n) for some sequences of operations. Using a different amortization argument, Pettie then proved that ''insert'', ''meld'', and ''decrease-key'' all run in O(2^) amortized time, which is o(\log n). Elmasry later introduced elaborations of pairing heaps (lazy, consolidate) for which ''decrease-key'' runs in O(\log \log n) amortized time and other operations have optimal amortized bounds, but no tight \Theta(\log\log n) bound is known for the original data structure. Although the asymptotic performance of pairing heaps is worse than other priority queue algorithms such as Fibonacci heaps, which perform ''decrease-key'' in O(1) amortized time, the performance in practice is excellent. Jones and Larkin, Sen, and Tarjan conducted experiments on pairing heaps and other heap data structures. They concluded that d-ary heaps such as binary heaps are faster than all other heap implementations when the ''decrease-key'' operation is not needed (and hence there is no need to externally track the location of nodes in the heap), but that when ''decrease-key'' is needed pairing heaps are often faster than d-ary heaps and almost always faster than other pointer-based heaps, including data structures like Fibonacci heaps that are theoretically more efficient. Chen et al. examined priority queues specifically for use with Dijkstra's algorithm and concluded that in normal cases using a d-ary heap without ''decrease-key'' (instead duplicating nodes on the heap and ignoring redundant instances) resulted in better performance, despite the inferior theoretical performance guarantees.


Structure

A pairing heap is either an empty heap, or a pairing tree consisting of a root element and a possibly empty list of pairing trees. The heap ordering property requires that parent of any node is no greater than the node itself. The following description assumes a purely functional heap that does not support the ''decrease-key'' operation. type PairingTree lem= Heap(elem: Elem, subheaps: List airingTree[Elem) type PairingHeap lem= Empty "> PairingTree[Elem A pointer-based implementation for RAM machines, supporting ''decrease-key'', can be achieved using three pointers per node, by representing the children of a node by a doubly-linked list: a pointer to the node's first child, one to its next sibling, and one to its previous sibling (or, for the leftmost sibling, to its parent). It can also be viewed as a variant of a Left-child right-sibling binary tree with an additional pointer to a node's parent (which represents its previous sibling or actual parent for the leftmost sibling). Alternatively, the previous-pointer can be omitted by letting the last child point back to the parent, if a single boolean flag is added to indicate "end of list". This achieves a more compact structure at the expense of a constant overhead factor per operation.


Operations


Meld

Melding with an empty heap returns the other heap, otherwise a new heap is returned that has the minimum of the two root elements as its root element and just adds the heap with the larger root to the list of subheaps: function meld(heap1, heap2: PairingHeap lem -> PairingHeap lem if heap1 is Empty return heap2 elsif heap2 is Empty return heap1 elsif heap1.elem < heap2.elem return Heap(heap1.elem, heap2 :: heap1.subheaps) else return Heap(heap2.elem, heap1 :: heap2.subheaps)


Insert

The easiest way to insert an element into a heap is to meld the heap with a new heap containing just this element and an empty list of subheaps: function insert(elem: Elem, heap: PairingHeap lem -> PairingHeap lem return meld(Heap(elem, []), heap)


Find-min

The function ''find-min'' simply returns the root element of the heap: function find-min(heap: PairingHeap lem -> Elem if heap is Empty error else return heap.elem


Delete-min

The only non-trivial fundamental operation is the deletion of the minimum element from the heap. This requires performing repeated melds of its children until only one tree remains. The standard strategy first melds the subheaps in pairs (this is the step that gave this data structure its name) from left to right and then melds the resulting list of heaps from right to left: function delete-min(heap: PairingHeap lem -> PairingHeap lem if heap is Empty error else return merge-pairs(heap.subheaps) This uses the auxiliary function ''merge-pairs'': function merge-pairs(list: List airingTree[Elem) -> PairingHeap lem if length(list)

0 return Empty elsif length(list)

1 return list[0] else return meld(meld(list[0], list[1]), merge-pairs(list[2..])) That this does indeed implement the described two-pass left-to-right then right-to-left merging strategy can be seen from this reduction: merge-pairs( 1, H2, H3, H4, H5, H6, H7 => meld(meld(H1, H2), merge-pairs( 3, H4, H5, H6, H7) # meld H1 and H2 to H12, then the rest of the list => meld(H12, meld(meld(H3, H4), merge-pairs( 5, H6, H7)) # meld H3 and H4 to H34, then the rest of the list => meld(H12, meld(H34, meld(meld(H5, H6), merge-pairs( 7))) # meld H5 and H6 to H56, then the rest of the list => meld(H12, meld(H34, meld(H56, H7))) # switch direction, meld the last two resulting heaps, giving H567 => meld(H12, meld(H34, H567)) # meld the last two resulting heaps, giving H34567 => meld(H12, H34567) # finally, meld the first pair with the result of merging the rest => H1234567


Summary of running times


References

{{reflist, 30em


External links

* Louis Wasserman discusses pairing heaps and their implementation in
Haskell Haskell () is a general-purpose, statically typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell pioneered several programming language ...
i
The Monad Reader, Issue 16
(pp. 37–52).

Sartaj Sahni Professor Sartaj Kumar Sahni (born July 22, 1949, in Pune, India) is a computer scientist based in the United States, and is one of the pioneers in the field of data structures. He is a distinguished professor in the Department of Computer and I ...
Heaps (data structures) Amortized data structures