Deployment
The network data that a packet capture appliance captures depends on where and how the appliance is installed on a network. There are two options for deploying packet capture appliances on a network. One option is to connect the appliance to the SPAN port (Centralized
With a centralized approach, one high-capacity, high-speed packet capture appliance connects to a data-aggregation point. The advantage of a centralized approach is that with one appliance you gain visibility over the network's entire traffic. This approach, however, creates a single point of failure that is a very attractive target for hackers; additionally, one would have to re-engineer the network to bring traffic to appliance and this approach typically involves high costs.Decentralized
With a decentralized approach you place multiple appliances around the network, starting at the point(s) of entry and proceeding downstream to deeper network segments, such as workgroups. The advantages include: no network re-configuration required; ease of deployment; multiple vantage points for incident response investigations; scalability; no single point of failure – if one fails, you have the others; if combined with electronic invisibility, this approach practically eliminates the danger of unauthorized access by hackers; low cost. Cons: potential increased maintenance of multiple appliances. In the past, packet capture appliances were sparingly deployed, oftentimes only at the point of entry into a network. Packet capture appliances can now be deployed more effectively at various points around the network. When conducting incident response, the ability to see the network data flow from various vantage points is indispensable in reducing time to resolution and narrowing down which parts of the network ultimately were affected. By placing packet capture appliances at the entry point and in front of each work group, following the path of a particular transmission deeper into the network would be simplified and much quicker. Additionally, the appliances placed in front of the workgroups would show intranet transmissions that the appliance located at the entry point would not be able to capture.Capacity
Packet capture appliances come with capacities ranging from 500 GB to 192 TB and more. Only a few organizations with extremely high network usage would have use for the upper ranges of capacities. Most organizations would be well served with capacities from 1 TB to 4 TB. A good rule of thumb when choosing capacity is to allow 1 GB per day for heavy users down to 1 GB per month for regular users. For a typical office of 20 people with average usage, 1 TB would be sufficient for about 1 to 4 years. The ratio 100/0 means simplex traffic on real links you can have even more trafficFeatures
Filtered vs. full packet capture
Full packet capture appliances capture and record all Ethernet/IP activity, while filtered packet capture appliances capture only a subset of traffic based on a set of user-definable filters; such asIntelligent Packet Capture
Intelligent packet capture uses machine learning to filter and reduce the amount of network traffic captured. Traditional filtered packet capture relies on rules and policies which are manually configured to capture all potentially malicious traffic. Intelligent packet capture uses machine learning models, including features fromEncrypted vs. unencrypted storage
Some packet capture appliancesSustained capture speed vs. peak capture speed
The sustained captured speed is the rate at which a packet capture appliance can capture and record packets without interruption or error over a long period of time. This is different from the peak capture rate, which is the highest speed at which a packet capture appliance can capture and record packets. The peak capture speed can only be maintained for short period of time, until the appliance's buffers fill up and it starts losing packets. Many packet capture appliances share the same peak capture speed of 1 Gbit/s, but actual sustained speeds vary significantly from model to model.Permanent vs. overwritable storage
A packet capture appliance with permanent storage is ideal for network forensics and permanent record-keeping purposes because the data captured cannot be overwritten, altered or deleted. The only drawback of permanent storage is that eventually the appliance becomes full and requires replacement. Packet capture appliances with overwritable storage are easier to manage because once they reach capacity they will start overwriting the oldest captured data with the new, however, network administrators run the risk of losing important capture data when it gets overwritten. In general, packet capture appliances with overwrite capabilities are useful for simple monitoring or testing purposes, for which a permanent record is not necessary. Permanent, non-overwritable recording is a must for network forensics information gathering.GbE vs. 10 GbE
Most businesses useData security
Since packet capture appliances capture and store a large amount of data on network activity, including files, emails and other communications, they could, in themselves, become attractive targets for hacking. A packet capture appliance deployed for any length of time should incorporate security features, to protect the recorded network data from access by unauthorized parties. If deploying a packet capture appliance introduces too many additional concerns about security, the cost of securing it may outweigh the benefits. The best approach would be for the packet capture appliance to have built-in security features. These security features may include encryption, or methods to “hide” the appliance's presence on the network. For example, some packet capture appliances feature “electronic invisibility”, where they have a stealthy network profile by not requiring or using IP nor MAC addresses. Though connecting a packet capture appliance via a SPAN port appears to make it more secure, the packet capture appliance would ultimately still have to be connected to the network in order to allow management and data retrieval. Though not accessible via the SPAN link, the appliance would be accessible via the management link. Despite the benefits, the ability to control a packet capture appliance from a remote machine presents a security issue that could make the appliance vulnerable. Packet capture appliances that allow remote access should have a robust system in place to protect it against unauthorized access. One way to accomplish this is to incorporate a manual disable, such as a switch or toggle that allows the user to physically disable remote access. This simple solution is very effective, as it is doubtful that a hacker would have an easy time gaining physical access to the appliance in order to flip a switch. A final consideration is physical security. All the network security features in the world are moot if someone is simply able to steal the packet capture appliance or make a copy of it and have ready access to the data stored on it. Encryption is one of the best ways to address this concern, though some packet capture appliances also feature tamperproof enclosures.See also
*References
{{DEFAULTSORT:Packet Capture Appliance Packets (information technology) Computer network security