POWER3
   HOME

TheInfoList



OR:

The POWER3 is a
microprocessor A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, a ...
, designed and exclusively manufactured by
IBM International Business Machines Corporation (using the trademark IBM), nicknamed Big Blue, is an American Multinational corporation, multinational technology company headquartered in Armonk, New York, and present in over 175 countries. It is ...
, that implemented the 64-bit version of the
PowerPC PowerPC (with the backronym Performance Optimization With Enhanced RISC – Performance Computing, sometimes abbreviated as PPC) is a reduced instruction set computer (RISC) instruction set architecture (ISA) created by the 1991 Apple Inc., App ...
instruction set architecture In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, ...
(ISA), including all of the optional instructions of the ISA (at the time) such as instructions present in the POWER2 version of the
POWER ISA Power ISA is a reduced instruction set computer (RISC) instruction set architecture (ISA) currently developed by the OpenPOWER Foundation, led by IBM. It was originally developed by IBM and the now-defunct Power.org industry group. Power IS ...
but not in the PowerPC ISA. It was introduced on 5 October 1998, debuting in the RS/6000 43P Model 260, a high-end graphics workstation.''New IBM POWER3 chip''. The POWER3 was originally supposed to be called the PowerPC 630 but was renamed, probably to differentiate the server-oriented POWER processors it replaced from the more consumer-oriented 32-bit PowerPCs. The POWER3 was the successor of the P2SC derivative of the POWER2 and completed IBM's long-delayed transition from POWER to PowerPC, which was originally scheduled to conclude in 1995. The POWER3 was used in IBM RS/6000 servers and workstations at 200 MHz. It competed with the
Digital Equipment Corporation Digital Equipment Corporation (DEC ), using the trademark Digital, was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until ...
(DEC)
Alpha 21264 The Alpha 21264, also known by its code name, EV6, is a RISC microprocessor developed by Digital Equipment Corporation launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA). Description The Alpha 2126 ...
and the
Hewlett-Packard The Hewlett-Packard Company, commonly shortened to Hewlett-Packard ( ) or HP, was an American multinational information technology company. It was founded by Bill Hewlett and David Packard in 1939 in a one-car garage in Palo Alto, California ...
(HP) PA-8500.


Description

The POWER3 was based on the PowerPC 620, an earlier 64-bit PowerPC implementation that was late, under-performing and commercially unsuccessful. Like the PowerPC 620, the POWER3 has three fixed-point units, but the single
floating-point unit A floating-point unit (FPU), numeric processing unit (NPU), colloquially math coprocessor, is a part of a computer system specially designed to carry out operations on floating-point numbers. Typical operations are addition, subtraction, multip ...
(FPU) was replaced with two floating-point fused multiply–add units, and an extra load-store unit was added (for a total of two) to improve floating-point performance. The POWER3 is a
superscalar A superscalar processor (or multiple-issue processor) is a CPU that implements a form of parallelism called instruction-level parallelism within a single processor. In contrast to a scalar processor, which can execute at most one single in ...
design that executed instructions out of order. It has a seven-stage integer pipeline, a minimal eight-stage load/store pipeline and a ten-stage floating-point pipeline. The front end consists of two stages: fetch and decode. During the first stage, eight instructions were fetched from a 32 KB instruction cache and placed in a 12-entry instruction buffer. During the second stage, four instructions were taken from the instruction buffer, decoded, and issued to instruction queues. Restrictions on instruction issue are few: of the two integer instruction queues, only one can accept one instruction, the other can accept up to four, as does the floating-point instruction queue. If the queues do not have enough unused entries, instructions cannot be issued. The front end has a short pipeline, resulting in a small three-cycle branch misprediction penalty. In stage three, instructions in the instruction queues that are ready for execution have their operands read from the register files. The general-purpose register file contains 48 registers, of which 32 are general-purpose registers and 16 are rename registers for
register renaming In computer architecture, register renaming is a technique that abstracts logical processor register, registers from physical registers. Every logical register has a set of physical registers associated with it. When a machine language instructio ...
. To reduce the number of ports required to provide data and receive results, the general purpose register file is duplicated so that there are two copies, the first supporting three integer execution units and the second supporting the two load/store units. This scheme was similar to a contemporary microprocessor, the DEC
Alpha 21264 The Alpha 21264, also known by its code name, EV6, is a RISC microprocessor developed by Digital Equipment Corporation launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA). Description The Alpha 2126 ...
, but was simpler as it did not require an extra clock cycle to synchronize the two copies due to the POWER3's higher cycle times. The floating-point register file contains 56 registers, of which 32 are floating-point registers and 24 rename registers. Compared to the PowerPC 620, there were more rename registers, which allowed more instructions to be executed out of order, improving performance. Execution begins in stage four. The instruction queues dispatch up to eight instructions to the execution units. Integer instructions are executed in three integer execution units (termed "fixed-point units" by IBM). Two of the units are identical and execute all integer instructions except for multiply and divide. All instructions executed by them have a one-cycle latency. The third unit executes multiply and divide instructions. These instructions are not pipelined and have multi-cycle latencies. 64-bit multiply has a nine-cycle latency and 64-bit divide has a 37-cycle latency. Floating-point instructions are executed in two floating-point units (FPUs). The FPUs are capable of fused multiply–add, where multiplication and addition is performed simultaneously. Such instructions, along with individual add and multiply, have a four-cycle latency. Divide and square-root instructions are executed in the same FPUs, but are assisted by specialized hardware. Single-precision (32-bit) divide and square-root instructions have a 14-cycle latency, whereas double-precision (64-bit) divide and square-root instructions have an 18-cycle and a 22-cycle latency, respectively. After execution is completed, the instructions are held in buffers before being committed and made visible to software. Execution finishes in stage five for integer instructions and stage eight for floating-point. Committing occurs during stage six for integers, stage nine for floating-point. Writeback occurs in the stage after commit. The POWER3 can retire up to four instructions per cycle. The PowerPC 620 data cache was optimized for technical and scientific applications. Its capacity was doubled to 64 KB, to improve the cache-hit rate; the cache was dual-ported, implemented by interleaving eight banks, to enable two loads or two stores to be performed in one cycle in certain cases; and the line-size was increased to 128-bytes. The L2 cache bus was doubled in width to 256 bits to compensate for the larger cache line size and to retain a four-cycle latency for cache refills. The POWER3 contained 15 million transistors on a 270 mm2 die. It was fabricated in IBM's CMOS-6S2 process, a complementary metal–oxide–semiconductor process that is a hybrid of 0.25 μm feature sizes and 0.35 μm metal layers. The process features five layers of aluminium. It was packaged in the same 1,088-column ceramic column grid array as the P2SC, but with a different pin out.


POWER3-II

The POWER3-II was an improved POWER3 that increased the clock frequency to 450 MHz. It contains 23 million transistors and measured 170 mm2. It was fabricated in the IBM CMOS7S process, a 0.22 μm CMOS process with six levels of
copper interconnect Copper interconnects are used in integrated circuits to reduce propagation delays and power consumption. Since copper is a better conductor than aluminium, ICs using copper for their interconnects can have interconnects with narrower dimensions, ...
. It was succeeded by the
POWER4 The POWER4 is a microprocessor developed by IBM, International Business Machines (IBM) that implemented the 64-bit PowerPC and PowerPC AS instruction set architectures. Released in 2001, the POWER4 succeeded the POWER3 and RS64 microprocessors, e ...
in 2001.


See also

* IBM POWER Instruction Set Architecture *
PowerPC PowerPC (with the backronym Performance Optimization With Enhanced RISC – Performance Computing, sometimes abbreviated as PPC) is a reduced instruction set computer (RISC) instruction set architecture (ISA) created by the 1991 Apple Inc., App ...
*
IBM Power microprocessors Power microprocessors (originally POWER prior to Power10) are designed and sold by IBM for Server (computing), servers and supercomputers. The name "POWER" was originally presented as an acronym for "Performance Optimization With Enhanced RISC ...


Notes


References

* * - gives more information about POWER1, POWER2, and POWER3 * O'Connell, F. P.; White, S. W. (6 November 2000). "POWER3: The next generation of PowerPC processors". ''IBM Journal of Research and Development'', Volume 44, Number 6. * Song, Peter (17 November 1997). "IBM's Power3 to Replace P2SC". ''
Microprocessor Report ''Microprocessor Report'' is a newsletter covering the microprocessor industry. The publication is accessible only to paying subscribers. To avoid bias, it does not take advertisements. The publication provides extensive analysis of new high-perf ...
''. * International Business Machines Corporation (5 October 1998). ''New IBM POWER3 chip''.
Press release A press release (also known as a media release) is an official statement delivered to members of the news media for the purpose of providing new information, creating an official statement, or making an announcement directed for public releas ...
. {{DEFAULTSORT:Power3 IBM microprocessors PowerPC microprocessors Superscalar microprocessors Computer-related introductions in 1998 64-bit microprocessors