This is a glossary of some terms used in the branch of mathematics known as
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
. Although there is no absolute distinction between different areas of topology, the focus here is on
general topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geomet ...
. The following definitions are also fundamental to
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
,
differential topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
and
geometric topology
In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another.
History
Geometric topology as an area distinct from algebraic topology may be said to have originat ...
.
All spaces in this glossary are assumed to be
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s unless stated otherwise.
A
;Absolutely closed: See ''H-closed''
;Accessible: See .
;Accumulation point: See
limit point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also conta ...
.
;
Alexandrov topology In topology, an Alexandrov topology is a topology in which the intersection of any family of open sets is open. It is an axiom of topology that the intersection of any ''finite'' family of open sets is open; in Alexandrov topologies the finite re ...
: The topology of a space ''X'' is an
Alexandrov topology In topology, an Alexandrov topology is a topology in which the intersection of any family of open sets is open. It is an axiom of topology that the intersection of any ''finite'' family of open sets is open; in Alexandrov topologies the finite re ...
(or is finitely generated) if arbitrary intersections of open sets in ''X'' are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the
upper set
In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
s of a
poset
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary r ...
.
;Almost discrete: A space is almost discrete if every open set is closed (hence clopen). The almost discrete spaces are precisely the finitely generated zero-dimensional spaces.
;α-closed, α-open: A subset ''A'' of a topological space ''X'' is α-open if , and the complement of such a set is α-closed.
;
Approach space In topology, a branch of mathematics, approach spaces are a generalization of metric spaces, based on point-to- set distances, instead of point-to-point distances. They were introduced by Robert Lowen in 1989, in a series of papers on approach the ...
: An
approach space In topology, a branch of mathematics, approach spaces are a generalization of metric spaces, based on point-to- set distances, instead of point-to-point distances. They were introduced by Robert Lowen in 1989, in a series of papers on approach the ...
is a generalization of metric space based on point-to-set distances, instead of point-to-point.
B
;Baire space: This has two distinct common meanings:
:#A space is a Baire space if the intersection of any
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural number ...
collection of dense open sets is dense; see
Baire space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior.
According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
.
:#Baire space is the set of all functions from the natural numbers to the natural numbers, with the topology of pointwise convergence; see
Baire space (set theory)
In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its elements are often called "reals". It is denoted NN, ...
.
; Base: A collection ''B'' of open sets is a base (or basis) for a topology if every open set in is a union of sets in . The topology is the smallest topology on containing and is said to be generated by .
;
Basis
Basis may refer to:
Finance and accounting
*Adjusted basis, the net cost of an asset after adjusting for various tax-related items
*Basis point, 0.01%, often used in the context of interest rates
* Basis trading, a trading strategy consisting o ...
: See Base.
;β-open: See ''Semi-preopen''.
;b-open, b-closed: A subset of a topological space is b-open if . The complement of a b-open set is b-closed.
;
Borel algebra
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are name ...
: The
Borel algebra
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are name ...
on a topological space is the smallest -algebra containing all the open sets. It is obtained by taking intersection of all -algebras on containing .
;Borel set: A Borel set is an element of a Borel algebra.
;
Boundary
Boundary or Boundaries may refer to:
* Border, in political geography
Entertainment
* ''Boundaries'' (2016 film), a 2016 Canadian film
* ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film
*Boundary (cricket), the edge of the pla ...
: The
boundary
Boundary or Boundaries may refer to:
* Border, in political geography
Entertainment
* ''Boundaries'' (2016 film), a 2016 Canadian film
* ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film
*Boundary (cricket), the edge of the pla ...
(or frontier) of a set is the set's closure minus its interior. Equivalently, the boundary of a set is the intersection of its closure with the closure of its complement. Boundary of a set is denoted by or .
; Bounded: A set in a metric space is bounded if it has
finite
Finite is the opposite of infinite. It may refer to:
* Finite number (disambiguation)
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb
Traditionally, a finite verb (from la, fīnītus, past partici ...
diameter. Equivalently, a set is bounded if it is contained in some open ball of finite radius. A
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-orie ...
image
An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
is a bounded set.
C
;
Category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
: The
category
Category, plural categories, may refer to:
Philosophy and general uses
*Categorization, categories in cognitive science, information science and generally
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce) ...
Top
A spinning top, or simply a top, is a toy with a squat body and a sharp point at the bottom, designed to be spun on its vertical axis, balancing on the tip due to the gyroscopic effect.
Once set in motion, a top will usually wobble for a f ...
has
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s as
objects
Object may refer to:
General meanings
* Object (philosophy), a thing, being, or concept
** Object (abstract), an object which does not exist at any particular time or place
** Physical object, an identifiable collection of matter
* Goal, an ai ...
and
continuous map
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in va ...
s as
morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphis ...
s.
;
Cauchy sequence
In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
: A
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
in a metric space (''M'', ''d'') is a
Cauchy sequence
In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
if, for every
positive
Positive is a property of positivity and may refer to:
Mathematics and science
* Positive formula, a logical formula not containing negation
* Positive number, a number that is greater than 0
* Plus sign, the sign "+" used to indicate a posi ...
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
''r'', there is an
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
''N'' such that for all integers ''m'', ''n'' > ''N'', we have ''d''(''x''''m'', ''x''''n'') < ''r''.
;
Clopen set
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but their mathematical d ...
: A set is
clopen
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but their mathematical de ...
if it is both open and closed.
;Closed ball: If (''M'', ''d'') is a
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
, a closed ball is a set of the form ''D''(''x''; ''r'') := , where ''x'' is in ''M'' and ''r'' is a
positive
Positive is a property of positivity and may refer to:
Mathematics and science
* Positive formula, a logical formula not containing negation
* Positive number, a number that is greater than 0
* Plus sign, the sign "+" used to indicate a posi ...
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
, the radius of the ball. A closed ball of radius ''r'' is a closed ''r''-ball. Every closed ball is a closed set in the topology induced on ''M'' by ''d''. Note that the closed ball ''D''(''x''; ''r'') might not be equal to the closure of the open ball ''B''(''x''; ''r'').
;
Closed set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric spac ...
: A set is
closed
Closed may refer to:
Mathematics
* Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set
* Closed set, a set which contains all its limit points
* Closed interval, ...
if its complement is a member of the topology.
;
Closed function
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets.
That is, a function f : X \to Y is open if for any open set U in X, the image f(U) is open in Y.
Likewise, ...
: A function from one space to another is closed if the
image
An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
of every closed set is closed.
; Closure: The closure of a set is the smallest closed set containing the original set. It is equal to the intersection of all closed sets which contain it. An element of the closure of a set ''S'' is a point of closure of ''S''.
;Closure operator: See
Kuratowski closure axioms In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first for ...
.
;
Coarser topology
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies.
Definition
A topology on a set may be defined as th ...
: If ''X'' is a set, and if ''T''1 and ''T''2 are topologies on ''X'', then ''T''1 is coarser (or smaller, weaker) than ''T''2 if ''T''1 is contained in ''T''2. Beware, some authors, especially analysts, use the term stronger.
;Comeagre: A subset ''A'' of a space ''X'' is comeagre (comeager) if its
complement
A complement is something that completes something else.
Complement may refer specifically to:
The arts
* Complement (music), an interval that, when added to another, spans an octave
** Aggregate complementation, the separation of pitch-clas ...
Compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
: A space is
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
if every open cover has a
finite
Finite is the opposite of infinite. It may refer to:
* Finite number (disambiguation)
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb
Traditionally, a finite verb (from la, fīnītus, past partici ...
subcover. Every compact space is Lindelöf and paracompact. Therefore, every compact
Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many ...
is normal. See also quasicompact.
;
Compact-open topology In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory a ...
: The
compact-open topology In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory a ...
on the set ''C''(''X'', ''Y'') of all continuous maps between two spaces ''X'' and ''Y'' is defined as follows: given a compact subset ''K'' of ''X'' and an open subset ''U'' of ''Y'', let ''V''(''K'', ''U'') denote the set of all maps ''f'' in ''C''(''X'', ''Y'') such that ''f''(''K'') is contained in ''U''. Then the collection of all such ''V''(''K'', ''U'') is a subbase for the compact-open topology.
;
Complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies ...
: A metric space is
complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies ...
if every Cauchy sequence converges.
;Completely metrizable/completely metrisable: See
complete space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in .
Intuitively, a space is complete if there are no "points missing" from it (inside or at the boun ...
.
;Completely normal: A space is completely normal if any two separated sets have
disjoint
Disjoint may refer to:
*Disjoint sets, sets with no common elements
*Mutual exclusivity, the impossibility of a pair of propositions both being true
See also
*Disjoint union
*Disjoint-set data structure
{{disambig
Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...