HOME

TheInfoList



OR:

In mathematics, an orthostochastic matrix is a
doubly stochastic matrix In mathematics, especially in probability and combinatorics, a doubly stochastic matrix (also called bistochastic matrix) is a square matrix X=(x_) of nonnegative real numbers, each of whose rows and columns sums to 1, i.e., :\sum_i x_=\sum_j x_= ...
whose entries are the squares of the absolute values of the entries of some
orthogonal matrix In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identity ...
. The detailed definition is as follows. A square matrix ''B'' of size ''n'' is doubly stochastic (or ''bistochastic'') if all its rows and columns sum to 1 and all its entries are nonnegative
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
. It is orthostochastic if there exists an
orthogonal matrix In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identity ...
''O'' such that : B_=O_^2 \text i,j=1,\dots,n. \, All 2-by-2 doubly stochastic matrices are orthostochastic (and also
unistochastic In mathematics, a unistochastic matrix (also called ''unitary-stochastic'') is a doubly stochastic matrix whose entries are the squares of the absolute values of the entries of some unitary matrix. A square matrix ''B'' of size ''n'' is doubly sto ...
) since for any : B= \begin a & 1-a \\ 1-a & a \end we find the corresponding orthogonal matrix : O = \begin \cos \phi & \sin \phi \\ - \sin \phi & \cos \phi \end, with \cos^2 \phi =a, such that B_=O_^2 . For larger ''n'' the sets of bistochastic matrices includes the set of unistochastic matrices, which includes the set of orthostochastic matrices and these inclusion relations are proper.


References

* {{DEFAULTSORT:Orthostochastic Matrix Matrices