In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, orthogonal coordinates are defined as a set of coordinates
in which the
coordinate hypersurfaces all meet at
right angles (note that superscripts are
indices, not
exponents). A coordinate surface for a particular coordinate is the
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
,
surface, or
hypersurface on which is a constant. For example, the three-dimensional
Cartesian coordinates is an orthogonal coordinate system, since its coordinate surfaces constant, constant, and constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of
curvilinear coordinates.
Motivation
While vector operations and physical laws are normally easiest to derive in
Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially
boundary value problems, such as those arising in field theories of
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
,
fluid flow
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
,
electrodynamics,
plasma physics and the
diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
of
chemical species or
heat.
The chief advantage of non-Cartesian coordinates is that they can be chosen to match the symmetry of the problem. For example, the pressure wave due to an explosion far from the ground (or other barriers) depends on 3D space in Cartesian coordinates, however the pressure predominantly moves away from the center, so that in
spherical coordinates the problem becomes very nearly one-dimensional (since the pressure wave dominantly depends only on time and the distance from the center). Another example is (slow) fluid in a straight circular pipe: in Cartesian coordinates, one has to solve a (difficult) two dimensional boundary value problem involving a partial differential equation, but in
cylindrical coordinates the problem becomes one-dimensional with an
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematic ...
instead of a
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.
The function is often thought of as an "unknown" that solves the equation, similar to ho ...
.
The reason to prefer orthogonal coordinates instead of general
curvilinear coordinates is simplicity: many complications arise when coordinates are not orthogonal. For example, in orthogonal coordinates many problems may be solved by
separation of variables. Separation of variables is a mathematical technique that converts a complex ''d''-dimensional problem into ''d'' one-dimensional problems that can be solved in terms of known functions. Many equations can be reduced to
Laplace's equation or the
Helmholtz equation
In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation:
\nabla^2 f = -k^2 f,
where is the Laplace operator, is the eigenvalue, and is the (eigen)fun ...
.
Laplace's equation is separable in 13 orthogonal coordinate systems (the 14 listed
in the table below with the exception of
toroidal), and the
Helmholtz equation
In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation:
\nabla^2 f = -k^2 f,
where is the Laplace operator, is the eigenvalue, and is the (eigen)fun ...
is separable in 11 orthogonal coordinate systems.
Orthogonal coordinates never have off-diagonal terms in their
metric tensor. In other words, the infinitesimal squared distance ''ds''
2 can always be written as a scaled sum of the squared infinitesimal coordinate displacements:
:
where ''d'' is the dimension and the scaling functions (or scale factors):
:
equal the square roots of the diagonal components of the metric tensor, or the lengths of the local basis vectors
described below. These scaling functions ''h''
''i'' are used to calculate differential operators in the new coordinates, e.g., the
gradient, the
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
, the
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the rate that the vector field alters the volume in an infinitesimal neighborhood of each point. (In 2D this "volume" refers to ...
and the
curl.
A simple method for generating orthogonal coordinates systems in two dimensions is by a
conformal mapping of a standard two-dimensional grid of
Cartesian coordinates . A
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
''z'' = ''x'' + ''iy'' can be formed from the real coordinates ''x'' and ''y'', where ''i'' represents the
imaginary unit. Any
holomorphic function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex de ...
''w'' = ''f''(''z'') with non-zero complex derivative will produce a
conformal mapping; if the resulting complex number is written , then the curves of constant ''u'' and ''v'' intersect at right angles, just as the original lines of constant ''x'' and ''y'' did.
Orthogonal coordinates in three and higher dimensions can be generated from an orthogonal two-dimensional coordinate system, either by projecting it into a new dimension (''cylindrical coordinates'') or by rotating the two-dimensional system about one of its symmetry axes. However, there are other orthogonal coordinate systems in three dimensions that cannot be obtained by projecting or rotating a two-dimensional system, such as the
ellipsoidal coordinates. More general orthogonal coordinates may be obtained by starting with some necessary coordinate surfaces and considering their
orthogonal trajectories.
Basis vectors
Covariant basis
In
Cartesian coordinates, the
basis vectors are fixed (constant). In the more general setting of
curvilinear coordinates, a point in space is specified by the coordinates, and at every such point there is bound a set of basis vectors, which generally are not constant: this is the essence of curvilinear coordinates in general and is a very important concept. What distinguishes orthogonal coordinates is that, though the basis vectors vary, they are always
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
with respect to each other. In other words,
:
These basis vectors are by definition the
tangent vector
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are ...
s of the curves obtained by varying one coordinate, keeping the others fixed:
:
where r is some point and ''q''
''i'' is the coordinate for which the basis vector is extracted. In other words, a curve is obtained by fixing all but one coordinate; the unfixed coordinate is varied as in a
parametric curve, and the derivative of the curve with respect to the parameter (the varying coordinate) is the basis vector for that coordinate.
Note that the vectors are not necessarily of equal length. The useful functions known as scale factors of the coordinates are simply the lengths
of the basis vectors
(see table below). The scale factors are sometimes called
Lamé coefficients, not to be confused with
Lamé parameters (solid mechanics).
The
normalized basis vectors are notated with a hat and obtained by dividing by the length:
:
A
vector field may be specified by its components with respect to the basis vectors or the normalized basis vectors, and one must be sure which case is meant. Components in the normalized basis are most common in applications for clarity of the quantities (for example, one may want to deal with tangential velocity instead of tangential velocity times a scale factor); in derivations the normalized basis is less common since it is more complicated.
Contravariant basis
The basis vectors shown above are
covariant basis vectors (because they "co-vary" with vectors). In the case of orthogonal coordinates, the contravariant basis vectors are easy to find since they will be in the same direction as the covariant vectors but
reciprocal length (for this reason, the two sets of basis vectors are said to be reciprocal with respect to each other):
:
this follows from the fact that, by definition,
, using the
Kronecker delta. Note that:
:
We now face three different basis sets commonly used to describe vectors in orthogonal coordinates: the covariant basis e
''i'', the contravariant basis e
''i'', and the normalized basis ê
''i''. While a vector is an ''objective quantity'', meaning its identity is independent of any coordinate system, the components of a vector depend on what basis the vector is represented in.
To avoid confusion, the components of the vector x with respect to the e
''i'' basis are represented as ''x''
''i'', while the components with respect to the e
''i'' basis are represented as ''x''
''i'':
:
The position of the indices represent how the components are calculated (upper indices should not be confused with
exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
). Note that the
summation
In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, pol ...
symbols Σ (capital
Sigma
Sigma ( ; uppercase Σ, lowercase σ, lowercase in word-final position ς; ) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as an operator ...
) and the summation range, indicating summation over all basis vectors (''i'' = 1, 2, ..., ''d''), are often
omitted. The components are related simply by:
:
There is no distinguishing widespread notation in use for vector components with respect to the normalized basis; in this article we'll use subscripts for vector components and note that the components are calculated in the normalized basis.
Vector algebra
Vector addition and negation are done component-wise just as in Cartesian coordinates with no complication. Extra considerations may be necessary for other vector operations.
Note however, that all of these operations assume that two vectors in a
vector field are bound to the same point (in other words, the tails of vectors coincide). Since basis vectors generally vary in orthogonal coordinates, if two vectors are added whose components are calculated at different points in space, the different basis vectors require consideration.
Dot product
The
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
in
Cartesian coordinates (
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
with an
orthonormal basis set) is simply the sum of the products of components. In orthogonal coordinates, the dot product of two vectors x and y takes this familiar form when the components of the vectors are calculated in the normalized basis:
:
This is an immediate consequence of the fact that the normalized basis at some point can form a Cartesian coordinate system: the basis set is
orthonormal.
For components in the covariant or contravariant bases,
:
This can be readily derived by writing out the vectors in component form, normalizing the basis vectors, and taking the dot product. For example, in 2D:
:
where the fact that the normalized covariant and contravariant bases are equal has been used.
Cross product
The
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
in 3D Cartesian coordinates is:
:
The above formula then remains valid in orthogonal coordinates if the components are calculated in the normalized basis.
To construct the cross product in orthogonal coordinates with covariant or contravariant bases we again must simply normalize the basis vectors, for example:
:
which, written expanded out,
:
Terse notation for the cross product, which simplifies generalization to non-orthogonal coordinates and higher dimensions, is possible with the
Levi-Civita tensor, which will have components other than zeros and ones if the scale factors are not all equal to one.
Vector calculus
Differentiation
Looking at an infinitesimal displacement from some point, it's apparent that
:
By
definition
A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
, the gradient of a function must satisfy (this definition remains true if ''ƒ'' is any
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
)
:
It follows then that
del operator must be:
:
and this happens to remain true in general curvilinear coordinates. Quantities like the
gradient and
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
follow through proper application of this operator.
Basis vector formulae
From dr and normalized basis vectors ê
''i'', the following can be constructed.
where
:
is the
Jacobian determinant, which has the geometric interpretation of the deformation in volume from the infinitesimal cube d''x''d''y''d''z'' to the infinitesimal curved volume in the orthogonal coordinates.
Integration
Using the line element shown above, the
line integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
along a path
of a vector F is:
:
An infinitesimal element of area for a surface described by holding one coordinate ''q
k'' constant is:
:
Similarly, the volume element is:
:
where the large symbol Π (capital
Pi) indicates a
product the same way that a large Σ indicates summation. Note that the product of all the scale factors is the
Jacobian determinant.
As an example, the
surface integral
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, o ...
of a vector function F over a ''q''
1 = ''constant'' surface
in 3D is:
:
Note that F
1/''h''
1 is the component of F normal to the surface.
Differential operators in three dimensions
Since these operations are common in application, all vector components in this section are presented with respect to the normalised basis:
.
The above expressions can be written in a more compact form using the
Levi-Civita symbol and the Jacobian determinant
, assuming summation over repeated indices:
Also notice the gradient of a scalar field can be expressed in terms of the
Jacobian matrix J containing canonical partial derivatives:
: