In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, particularly in
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, configurations of a physical system that satisfy classical
equations of motion
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Ver ...
are called "on the mass shell" or simply more often on shell; while those that do not are called "off the mass shell", or off shell.
In quantum field theory,
virtual particle
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbat ...
s are termed off shell because they do not satisfy the
energy–momentum relation
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It i ...
; real exchange particles do satisfy this relation and are termed on shell (mass shell). In
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
for instance, in the
action formulation, extremal solutions to the
variational principle are on shell and the
Euler–Lagrange equations give the on-shell equations.
Noether's theorem regarding differentiable symmetries of physical action and
conservation law
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
s is another on-shell theorem.
Mass shell
Mass shell is a synonym for mass hyperboloid, meaning the
hyperboloid
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by defo ...
in
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
–
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
space describing the solutions to the equation:
:
,
the
mass–energy equivalence formula which gives the energy
in terms of the momentum
and the
rest mass of a particle. The equation for the mass shell is also often written in terms of the
four-momentum
In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is ...
; in
Einstein notation
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
with
metric signature (+,−,−,−) and units where the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, as
. In the literature, one may also encounter
if the metric signature used is (−,+,+,+).
The four-momentum of an exchanged virtual particle
is
, with mass
. The four-momentum
of the virtual particle is the difference between the four-momenta of the incoming and outgoing particles.
Virtual particles corresponding to internal
propagator
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In ...
s in a
Feynman diagram are in general allowed to be off shell, but the amplitude for the process will diminish depending on how far off shell they are. This is because the
-dependence of the propagator is determined by the four-momenta of the incoming and outgoing particles. The propagator typically has
singularities on the mass shell.
[Thomson, M. (2013). ''Modern particle physics''. Cambridge University Press, , p.119.]
When speaking of the propagator, negative values for
that satisfy the equation are thought of as being on shell, though the classical theory does not allow negative values for the energy of a particle. This is because the propagator incorporates into one expression the cases in which the particle carries energy in one direction, and in which its
antiparticle carries energy in the other direction; negative and positive on-shell
then simply represent opposing flows of positive energy.
Scalar field
An example comes from considering a
scalar field
In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
in ''D''-dimensional
Minkowski space. Consider a
Lagrangian density given by
. The
action
:
The Euler–Lagrange equation for this action can be found by
varying the field and its derivative and setting the variation to zero, and is:
:
Now, consider an infinitesimal spacetime
translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
. The Lagrangian density
is a scalar, and so will infinitesimally transform as
under the infinitesimal transformation. On the other hand, by
Taylor expansion, we have in general
:
Substituting for
and noting that
(since the variations are independent at each point in spacetime):
:
Since this has to hold for independent translations
, we may "divide" by
and write:
:
This is an example of equation that holds ''off shell'', since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an ''on shell'' equation by simply substituting the Euler–Lagrange equation:
:
We can write this as:
:
And if we define the quantity in parentheses as
, we have:
:
This is an instance of Noether's theorem. Here, the conserved quantity is the
stress–energy tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
, which is only conserved on shell, that is, if the equations of motion are satisfied.
References
{{DEFAULTSORT:On Shell And Off Shell
Quantum field theory