
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an even function is a
real function
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
such that
for every
in its
domain. Similarly, an odd function is a function such that
for every
in its domain.
They are named for the
parity of the powers of the
power functions which satisfy each condition: the function
is even if ''n'' is an
even integer
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers.
The ...
, and it is odd if ''n'' is an odd integer.
Even functions are those real functions whose
graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discret ...
is
self-symmetric with respect to the and odd functions are those whose graph is self-symmetric with respect to the
origin.
If the domain of a real function is self-symmetric with respect to the origin, then the function can be uniquely decomposed as the sum of an even function and an odd function.
Early history
The concept of even and odd functions appears to date back to the early 18th century, with
Leonard Euler playing a significant role in their formalization. Euler introduced the concepts of even and odd functions (using Latin terms ''pares'' and ''impares'') in his work ''Traiectoriarum Reciprocarum Solutio'' from 1727. Before Euler, however,
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
had already developed geometric means of deriving coefficients of power series when writing the ''Principia'' (1687), and included algebraic techniques in an early draft of his ''Quadrature of Curves,'' though he removed it before publication in 1706. It is also noteworthy that Newton didn't explicitly name or focus on the even-odd decomposition, his work with power series would have involved understanding properties related to even and odd powers.
Definition and examples
Evenness and oddness are generally considered for
real function
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
s, that is real-valued functions of a real variable. However, the concepts may be more generally defined for functions whose
domain and
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
both have a notion of
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
. This includes
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s, all
rings, all
fields
Fields may refer to:
Music
*Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song by ...
, and all
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s. Thus, for example, a real function could be odd or even (or neither), as could a
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
-valued function of a vector variable, and so on.
The given examples are real functions, to illustrate the
symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
of their
graphs
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of discre ...
.
Even functions
A
real function
In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers \mathbb, or a subset of \mathbb that contains an inter ...
is even if, for every in its domain, is also in its domain and
or equivalently
Geometrically, the graph of an even function is
symmetric
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
with respect to the ''y''-axis, meaning that its graph remains unchanged after
reflection about the ''y''-axis.
Examples of even functions are:
*The
absolute value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
*
*
for any even integer
*
cosine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
*
hyperbolic cosine
*
Gaussian function
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function (mathematics), function of the base form
f(x) = \exp (-x^2)
and with parametric extension
f(x) = a \exp\left( -\frac \right)
for arbitrary real number, rea ...
Odd functions
A real function is odd if, for every in its domain, is also in its domain and
[
or equivalently
Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after ]rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
of 180 degrees about the origin.
If is in the domain of an odd function , then .
Examples of odd functions are:
*The sign function
In mathematics, the sign function or signum function (from '' signum'', Latin for "sign") is a function that has the value , or according to whether the sign of a given real number is positive or negative, or the given number is itself zer ...
*The identity function
* for any odd integer
*