Oct-4 (
octamer
In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomer, monomers.Quote: ''Oligomer molecule: A molecule of intermediate ...
-binding
transcription factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
4), also known as POU5F1 (
POU domain, class 5, transcription factor 1), is a
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''POU5F1''
gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
.
Oct-4 is a
homeodomain transcription factor of the
POU family. It is critically involved in the
self-renewal of undifferentiated
embryonic stem cell
Embryonic stem cells (ESCs) are Cell potency#Pluripotency, pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-Implantation (human embryo), implantation embryo. Human embryos reach the blastocyst stage 4� ...
s. As such, it is frequently used as a
marker for undifferentiated cells. Oct-4 expression must be closely regulated; too much or too little will cause differentiation of the cells.
Octamer-binding transcription factor 4, OCT-4, is a transcription factor protein that is encoded by the ''POU5F1'' gene and is part of the
POU (Pit-Oct-Unc) family. OCT-4 consists of an octamer motif, a particular DNA sequence of AGTCAAAT that binds to their target genes and activates or deactivates certain expressions. These gene expressions then lead to phenotypic changes in stem cell differentiation during the development of a mammalian embryo. It plays a vital role in determining the fates of both inner mass cells and embryonic stem cells and has the ability to maintain pluripotency throughout embryonic development. Recently, it has been noted that OCT-4 not only maintains pluripotency in embryonic cells but also has the ability to regulate cancer cell proliferation and can be found in various cancers such as pancreatic, lung, liver and testicular germ cell tumors in adult germ cells. Another defect this gene can have is dysplastic growth in epithelial tissues which are caused by a lack of OCT-4 within the epithelial cells.
Expression and function
Oct-4 transcription factor is initially active as a
maternal factor in the
oocyte
An oocyte (, oöcyte, or ovocyte) is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female ger ...
and remains active in embryos throughout the preimplantation period. Oct-4 expression is associated with an undifferentiated phenotype and tumors. Gene knockdown of Oct-4 promotes
differentiation, demonstrating a role for these factors in human embryonic stem cell self-renewal. Oct-4 can form a heterodimer with
Sox2, so that these two proteins bind DNA together.
Mouse embryos that are Oct-4 deficient or have low expression levels of Oct-4 fail to form the
inner cell mass
The inner cell mass (ICM) or embryoblast (known as the pluriblast in marsupials) is a structure in the early development of an embryo. It is the mass of cells inside the blastocyst that will eventually give rise to the definitive structures of t ...
, lose
pluripotency
Cell potency is a cell's ability to differentiate into other cell types.
The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum ...
, and differentiate into
trophectoderm
The trophoblast (from Greek : to feed; and : germinator) is the outer layer of cells of the blastocyst. Trophoblasts are present four days after fertilization in humans. They provide nutrients to the embryo and develop into a large part of the pl ...
. Therefore, the level of Oct-4 expression in mice is vital for regulating pluripotency and early cell differentiation since one of its main functions is to keep the embryo from differentiating.
Orthologs
Orthologs
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a spec ...
of Oct-4 in humans and other species include:
Structure
Oct-4 contains the following
protein domain
In molecular biology, a protein domain is a region of a protein's Peptide, polypeptide chain that is self-stabilizing and that Protein folding, folds independently from the rest. Each domain forms a compact folded Protein tertiary structure, thre ...
s:
Implications in disease
Oct-4 has been implicated in tumorigenesis of adult germ cells.
Ectopic expression of the factor in adult mice has been found to cause the formation of
dysplastic lesions of the skin and intestine. The intestinal dysplasia resulted from an increase in progenitor cell population and the upregulation of
β-catenin
Catenin beta-1, also known as β-catenin (''beta''-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene.
β-Catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcr ...
transcription through the inhibition of cellular differentiation.
Pluripotency in embryo development
Animal model
In 2000, Niwa et al. used conditional expression and repression in murine embryonic stem cells to determine requirements for Oct-4 in the maintenance of developmental potency.
Although transcriptional determination has often been considered as a binary on-off control system, they found that the precise level of Oct-4 governs 3 distinct fates of ES cells. An increase in expression of less than 2-fold causes differentiation into primitive
endoderm
Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gastr ...
and mesoderm. In contrast, repression of Oct-4 induces loss of pluripotency and dedifferentiation to trophectoderm. Thus, a critical amount of Oct-4 is required to sustain stem cell self-renewal, and up- or down-regulation induces divergent developmental programs. Changes to Oct-4 levels do not independently promote differentiation, but are also controlled by levels of
Sox2. A decrease in Sox2 accompanies increased levels of Oct-4 to promote a mesendodermal fate, with Oct-4 actively inhibiting ectodermal differentiation. Repressed Oct-4 levels that lead to ectodermal differentiation are accompanied by an increase in Sox2, which effectively inhibits mesendodermal differentiation.
Niwa et al. suggested that their findings established a role for Oct-4 as a
master regulator of pluripotency that controls lineage commitment and illustrated the sophistication of critical transcriptional regulators and the consequent importance of quantitative analyzes.
The transcription factors Oct-4, Sox2, and Nanog are part of a complex regulatory network, with Oct-4 and Sox2 being capable of directly regulating Nanog by binding to its promoter, and are essential for maintaining the self-renewing undifferentiated state of the inner cell mass of the blastocyst,
embryonic stem cell
Embryonic stem cells (ESCs) are Cell potency#Pluripotency, pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-Implantation (human embryo), implantation embryo. Human embryos reach the blastocyst stage 4� ...
lines (which are cell lines derived from the inner cell mass), and induced pluripotent stem cells.
[ While differential up- and down-regulation of Oct-4 and Sox2 has been shown to promote differentiation, down-regulation of Nanog must occur for differentiation to proceed.]
Role in reprogramming
Oct-4 is one of the transcription factors that is used to create induced pluripotent stem cell
Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Jap ...
s (iPSCs), together with Sox2, Klf4, and often c- Myc (OSKM) in mice, demonstrating its capacity to induce an embryonic stem-cell-like state. These factors are often referred to as " Yamanaka reprogramming factors". This reprogramming effect has also been seen with the Thomson reprogramming factors, reverting human fibroblast cells to iPSCs via Oct-4, along with Sox2, Nanog, and Lin28. The use of Thomson reprogramming factors avoids the need to overexpress c-Myc, an oncogene. It was later determined that only two of these four factors, namely Oct4 and Klf4, are sufficient to reprogram mouse adult neural stem cells. Finally it was shown that a single factor, Oct-4 was sufficient for this transformation. Moreover, while Sox2, Klf4, and cMyc could be replaced by their respective family members, Oct4's closer relatives, Oct1 and Oct6, fail to induce pluripotency, thus demonstrating the exclusiveness of Oct4 among POU transcription factors. However, later it was shown that Oct4 could be completely omitted from the Yamanaka cocktail, and the remaining three factors, Sox2, Klf4, and cMyc (SKM) could generate mouse iPSCs with dramatically enhanced developmental potential. This suggests that Oct4 increases the efficiency of reprogramming, but decreases the quality of resulting iPSCs. This is possibly due to a mutated OCT4 DBD cysteine residue (Cys48) that has been identified as a central reprogramming determinant. The serine residue in OCT1 is mutated in the presence of the OCT4 N terminus, which conversely causes OCT4's serine (converted from cysteine) to reduce reprogramming efficiency by 60%.
In embryonic stem cells
*In ''in vitro'' experiments of mouse embryonic stem cells, Oct-4 has often been used as a marker of stemness, as differentiated cells show reduced expression of this marker.
*Oct3/4 can both repress and activate the promoter of '' Rex1''. In cells that already express high level of Oct3/4, exogenously transfected Oct3/4 will lead to the repression of Rex1. However, in cells that are not actively expressing Oct3/4, exogenous transfection of Oct3/4 will lead to the activation of Rex1.[ This implies a dual regulatory ability of Oct3/4 on Rex1. At low levels of the Oct3/4 protein, the Rex1 promoter is activated, while at high levels of the Oct3/4 protein, the Rex1 promoter is repressed.
*Oct4 contributes to the rapid cell cycle of ESCs by promoting progression through the ]G1 phase
The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes Messenger RNA, mRNA and proteins in preparation for subsequ ...
, specifically through transcriptional inhibition of cyclin-dependent kinase
Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzym ...
inhibitors such as p21.
* CRISPR-Cas9 knockout of the gene in human embryonic stem cells demonstrated that Oct-4 is essential for the development after fertilisation.
*Oct3/4 represses Suv39h1 expression through the activation of an antisense long non-coding RNA. Suv39h1 inhibition maintains low level of H3K9me3 in pluripotent cells limiting the formation of heterochromatin.
In adult stem cells
Several studies suggest a role for Oct-4 in sustaining self-renewal capacity of adult somatic stem cells (i.e. stem cells from epithelium, bone marrow, liver, etc.).[For example:
*
* ] Other scientists have produced evidence to the contrary, and dismiss those studies as artifacts of ''in vitro'' culture, or interpreting background noise as signal, and warn about Oct-4 pseudogene
Pseudogenes are nonfunctional segments of DNA that resemble functional genes. Pseudogenes can be formed from both protein-coding genes and non-coding genes. In the case of protein-coding genes, most pseudogenes arise as superfluous copies of fun ...
s giving false detection of Oct-4 expression.
Oct-4 has also been implicated as a marker of cancer stem cells.
A majority of Oct4 cancer stem-like cell studies (CSC) report a positive association between expression of OCT4 and chemoresistance. Chemotherapy resulting in the enrichment of CSCs showed changes in the phenotypes and increased stem cell markers of OCT4. Various cancers such as lung cancer, bladder cancer, and mesothelioma cells with high OCT4 expressions showed resistance to cisplatin, general drug resistance, and tumor recurrence. Breast cancer patients had tamoxifen resistance and poor clinical outcomes associated with OCT4.
OCT4 knock-downs increase sensitivity to cisplatin and irradiation in lung cells, retained tumorigenicity in glioma-initiating cells, and metastasis mediation in ovarian cancer. In in vitro studies looking at cisplatin, knock-down of OCT4 increased their sensitivity and reduced cell proliferation. Further investigation is needed due to the sparsity of stem cells within tumors and their heterogeneity.
See also
* Enhancer
*Histone
In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
*Pribnow box
The Pribnow box (also known as the Pribnow-Schaller box) is a sequence of ''TATAAT'' of six nucleotides (thymine, adenine, thymine, etc.) that is an essential part of a promoter site on DNA for transcription to occur in bacteria.
It is an ideal ...
*RNA polymerase
In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.
Using the e ...
*Gene regulatory network
A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the fu ...
References
Further reading
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
External links
*
*
Generating iPS Cells from MEFS through Forced Expression of Sox-2, Oct-4, c-Myc, and Klf4
{{Transcription factors, g3
POU-domain proteins