Oberth Effect
   HOME

TheInfoList



OR:

In
astronautics Astronautics (or cosmonautics) is the practice of sending spacecraft beyond atmosphere of Earth, Earth's atmosphere into outer space. Spaceflight is one of its main applications and space science is its overarching field. The term ''astronautics' ...
, a powered flyby, or Oberth maneuver, is a maneuver in which a
spacecraft A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
falls into a gravitational well and then uses its engines to further accelerate as it is falling, thereby achieving additional speed. The resulting maneuver is a more efficient way to gain
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
than applying the same impulse outside of a gravitational well. The gain in efficiency is explained by the Oberth effect, wherein the use of a
reaction engine A reaction engine is an engine, engine or motor that produces thrust by expelling reaction mass (reaction propulsion), in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there ...
at higher speeds generates a greater change in mechanical energy than its use at lower speeds. In practical terms, this means that the most energy-efficient method for a spacecraft to
burn A burn is an injury to skin, or other tissues, caused by heat, electricity, chemicals, friction, or ionizing radiation (such as sunburn, caused by ultraviolet radiation). Most burns are due to heat from hot fluids (called scalding), soli ...
its fuel is at the lowest possible orbital periapsis, when its orbital velocity (and so, its kinetic energy) is greatest. In some cases, it is even worth spending fuel on slowing the spacecraft into a gravity well to take advantage of the efficiencies of the Oberth effect. The maneuver and effect are named after the Transylvanian Saxon
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
and a founder of modern rocketry Hermann Oberth, who first described them in 1927. Because the vehicle remains near periapsis only for a short time, for the Oberth maneuver to be most effective the vehicle must be able to generate as much impulse as possible in the shortest possible time. As a result the Oberth maneuver is much more useful for high-thrust rocket engines like
liquid-propellant rocket A liquid-propellant rocket or liquid rocket uses a rocket engine burning liquid rocket propellant, liquid propellants. (Alternate approaches use gaseous or Solid-propellant rocket , solid propellants.) Liquids are desirable propellants because th ...
s, and less useful for low-thrust reaction engines such as
ion drive An ion thruster, ion drive, or ion engine is a form of electrically powered spacecraft propulsion, electric propulsion used for spacecraft propulsion. An ion thruster creates a cloud of cation, positive ions from a neutral gas by ionizing i ...
s, which take a long time to gain speed. Low thrust rockets can use the Oberth effect by splitting a long departure burn into several short burns near the periapsis. The Oberth effect also can be used to understand the behavior of multi-stage rockets: the upper stage can generate much more usable kinetic energy than the total chemical energy of the propellants it carries. In terms of the energies involved, the Oberth effect is more effective at higher speeds because at high speed the
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicle ...
has significant kinetic energy in addition to its chemical potential energy. At higher speed the vehicle is able to employ the greater change (reduction) in kinetic energy of the propellant (as it is exhausted backward and hence at reduced speed and hence reduced kinetic energy) to generate a greater increase in kinetic energy of the vehicle.


Explanation in terms of work and kinetic energy

Because kinetic energy equals ''mv''2/2, this change in velocity imparts a greater increase in kinetic energy at a high velocity than it would at a low velocity. For example, considering a 2 kg rocket: * at 1 m/s, the rocket starts with 12 = 1 J of kinetic energy. Adding 1 m/s increases the kinetic energy to 22 = 4 J, for a gain of 3 J; * at 10 m/s, the rocket starts with 102 = 100 J of kinetic energy. Adding 1 m/s increases the kinetic energy to 112 = 121 J, for a gain of 21 J. This greater change in kinetic energy can then carry the rocket higher in the gravity well than if the propellant were burned at a lower speed.


Description in terms of work

The thrust produced by a rocket engine is independent of the rocket’s velocity relative to the surrounding atmosphere. A rocket acting on a fixed object, as in a static firing, does no useful work on the rocket; the rocket's chemical energy is progressively converted to kinetic energy of the exhaust, plus heat. But when the rocket moves, its thrust acts through the distance it moves. Force multiplied by displacement is the definition of
mechanical work In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stre ...
. The greater the velocity of the rocket and payload during the burn the greater is the displacement and the work done, and the greater the increase in kinetic energy of the rocket and its payload. As the velocity of the rocket increases, progressively more of the available kinetic energy goes to the rocket and its payload, and less to the exhaust. This is shown as follows. The mechanical work done on the rocket is defined as the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
of the force of the engine's thrust and the displacement it travels during the burn : W = \vec \cdot \vec. If the burn is made in the prograde direction, The work results in a change in kinetic energy : \Delta E_k = F \cdot s. Differentiating with respect to time, we obtain : \frac = F \cdot \frac, or : \frac = F \cdot v, where v is the velocity. Dividing by the instantaneous mass m to express this in terms of
specific energy Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, st ...
we get : \frac = \frac F m \cdot v = a \cdot v, where a is the
acceleration In mechanics, acceleration is the Rate (mathematics), rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are Euclidean vector, vector ...
vector. Thus it can be readily seen that the rate of gain of specific energy of every part of the rocket is proportional to speed and, given this, the equation can be integrated ( numerically or otherwise) to calculate the overall increase in specific energy of the rocket.


Impulsive burn

Integrating the above energy equation is often unnecessary if the burn duration is short. Short burns of chemical rocket engines close to periapsis or elsewhere are usually mathematically modeled as impulsive burns, where the force of the engine dominates any other forces that might change the vehicle's energy over the burn. For example, as a vehicle falls toward periapsis in any orbit (closed or escape orbits) the velocity relative to the central body increases. Briefly burning the engine (an "impulsive burn") prograde at periapsis increases the velocity by the same increment as at any other time ( \Delta v). However, since the vehicle's kinetic energy is related to the ''square'' of its velocity, this increase in velocity has a non-linear effect on the vehicle's kinetic energy, leaving it with higher energy than if the burn were achieved at any other time.


Oberth calculation for a parabolic orbit

If an impulsive burn of Δ''v'' is performed at periapsis in a parabolic orbit, then the velocity at periapsis before the burn is equal to the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
(''V''esc), and the specific kinetic energy after the burn isFollowing th
calculation
on rec.arts.sf.science.
: \begin e_k &= \tfrac V^2 \\ &= \tfrac (V_\text + \Delta v )^2 \\ &= \tfrac V_\text ^ 2 + \Delta v V_\text + \tfrac \Delta v^2, \end where V = V_\text + \Delta v. When the vehicle leaves the gravity field, the loss of specific kinetic energy is : \tfrac V_\text^2, so it retains the energy : \Delta v V_\text + \tfrac \Delta v^2, which is larger than the energy from a burn outside the gravitational field (\tfrac \Delta v^2) by : \Delta v V_\text. When the vehicle has left the gravity well, it is traveling at a speed : V = \Delta v \sqrt. For the case where the added impulse Δ''v'' is small compared to escape velocity, the 1 can be ignored, and the effective Δ''v'' of the impulsive burn can be seen to be multiplied by a factor of simply : \sqrt and one gets : V\sqrt . Similar effects happen in closed and hyperbolic orbits.


Parabolic example

If the vehicle travels at velocity ''v'' at the start of a burn that changes the velocity by Δ''v'', then the change in specific orbital energy (SOE) due to the new orbit is : v \,\Delta v + \tfrac(\Delta v)^2. Once the spacecraft is far from the planet again, the SOE is entirely kinetic, since
gravitational potential energy Gravitational energy or gravitational potential energy is the potential energy an object with mass has due to the gravitational potential of its position in a gravitational field. Mathematically, it is the minimum Work (physics), mechanical work t ...
approaches zero. Therefore, the larger the ''v'' at the time of the burn, the greater the final kinetic energy, and the higher the final velocity. The effect becomes more pronounced the closer to the central body, or more generally, the deeper in the gravitational field potential in which the burn occurs, since the velocity is higher there. So if a spacecraft is on a parabolic flyby of Jupiter with a periapsis velocity of 50 km/s and performs a 5 km/s burn, it turns out that the final velocity change at great distance is 22.9 km/s, giving a multiplication of the burn by 4.58 times.


Paradox

It may seem that the rocket is getting energy for free, which would violate
conservation of energy The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
. However, any gain to the rocket's kinetic energy is balanced by a relative decrease in the kinetic energy the exhaust is left with (the kinetic energy of the exhaust may still increase, but it does not increase as much). Contrast this to the situation of static firing, where the speed of the engine is fixed at zero. This means that its kinetic energy does not increase at all, and all the chemical energy released by the fuel is converted to the exhaust's kinetic energy (and heat). At very high speeds the mechanical power imparted to the rocket can exceed the total power liberated in the combustion of the propellant; this may also seem to violate conservation of energy. But the propellants in a fast-moving rocket carry energy not only chemically, but also in their own kinetic energy, which at speeds above a few kilometres per second exceed the chemical component. When these propellants are burned, some of this kinetic energy is transferred to the rocket along with the chemical energy released by burning. The Oberth effect can therefore partly make up for what is extremely low efficiency early in the rocket's flight when it is moving only slowly. Most of the work done by a rocket early in flight is "invested" in the kinetic energy of the propellant not yet burned, part of which they will release later when they are burned.


See also

* Bi-elliptic transfer *
Gravity assist A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby (spaceflight), flyby which makes use of the relative movement (e.g. orbit around the Sun) and gra ...
* Propulsive efficiency


References


External links


Oberth effectExplanation of the effect
by Geoffrey Landis.
Rocket propulsion, classical relativity, and the Oberth effect

Animation (MP4) of the Oberth effect in orbit
from the Blanco and Mungan paper cited above. {{DEFAULTSORT:Oberth Effect Aerospace engineering Rocketry Astrodynamics