OS4000 is a
proprietary operating system
An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs.
Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
introduced by
GEC Computers Limited in 1977 as the successor to GEC DOS, for its range of
GEC 4000 series 16-bit
16-bit microcomputers are microcomputers that use 16-bit microprocessors.
A 16-bit register can store 216 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two mos ...
, and later
32-bit
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32- bit units. Compared to smaller bit widths, 32-bit computers can perform large calcula ...
,
minicomputer
A minicomputer, or colloquially mini, is a class of smaller general purpose computers that developed in the mid-1960s and sold at a much lower price than mainframe and mid-size computers from IBM and its direct competitors. In a 1970 survey, ...
s. OS4000 was developed through to late 1990s, and has been in a support-only mode since then.
History
The first operating systems for the GEC 4000 series were COS (Core Operating System) and DOS (Disk Operating System). These were basically single-user multi-tasking operating systems, designed for developing and running
Process control
An industrial process control in continuous production processes is a discipline that uses industrial control systems to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. ...
type applications.
OS4000 was first released around 1977. It reused many of the parts of DOS, but added multi-user access, OS4000 JCL
Command-line interpreter
A command-line interpreter or command-line processor uses a command-line interface (CLI) to receive command (computing), commands from a user in the form of lines of text. This provides a means of setting parameters for the environment, invokin ...
, Batch processing, OS4000 hierarchical filesystem (although on-disk format very similar to the non-hierarchical DOS filesystem). OS4000 JCL was based on the
Cambridge University Phoenix command interpreter.
OS4000 Rel 3 arrived around 1980, and included Linked-OS — support for Linked OS4000 operating systems to enable multi-node systems to be constructed. The main customer for this was the central computing service of
University College London
, mottoeng = Let all come who by merit deserve the most reward
, established =
, type = Public research university
, endowment = £143 million (2020)
, budget = � ...
(Euclid), where a multi-node system consisting of a ''Hub''
file server
In computing, a file server (or fileserver) is a computer attached to a network that provides a location for shared disk access, i.e. storage of computer files (such as text, image, sound, video) that can be accessed by the workstations that are ab ...
and multiple ''Rim'' multi-access compute server systems provided service for over 100 simultaneous users. Linked-OS was also used to construct fail-over Process control systems with higher resilience.
OS4000 Rel 4 arrived around 1983, and upped the maximum number of user modules to 150 (again, mainly for the University College London Euclid system), together with an enhanced Batch processing system. It also included support for the GEC 4090 processor, which introduced a 32-bit addressing mode.
OS4000 Rel 5 introduced a modified version of the OS4000 filesystem called CFSX, in order to allow easier use of larger disks. The initial Rel 5 only supported the CFSX filesystem, but support for the original CFS1 filesystem was reintroduced as well quite quickly.
OS4000 Rel 6 introduced support for dual processor systems (GEC 4190D).
OS4000 was developed in the UK at GEC Computers
Borehamwood offices in Elstree Way, and at GEC Computers ''
Dunstable
Dunstable ( ) is a market town and civil parish in Bedfordshire, England, east of the Chiltern Hills, north of London. There are several steep chalk escarpments, most noticeable when approaching Dunstable from the north. Dunstable is the ...
Development Centre'' in Woodside Estate, Dunstable.
Architecture
The architecture of OS4000 is very heavily based around the features of the platform it runs on, the
GEC 4000 series minicomputers, and these are rather unusual. They include a feature called ''
Nucleus
Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
* Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucl ...
,'' which is a combination of a hardware- and firmware-based kernel, which cannot be altered under program control. This means that many of the features typically found in operating system kernels do not need to be included in OS4000, as the underlying platform performs these functions instead of the operating system. Consequently, there is no provision for running
privileged mode
In computer science, hierarchical protection domains, often called protection rings, are mechanisms to protect data and functionality from faults (by improving fault tolerance) and malicious behavior (by providing computer security).
Computer ...
code on the platform—all OS4000 operating system code runs as processes.
Nucleus supports up to 256 processes, and schedules these automatically using a fixed priority scheme. OS4000 lives entirely within these processes. A set of ''system tables'' are used to configure Nucleus, and access to these system tables can be granted to processes which need to alter the configuration of Nucleus, e.g. to load new programs into processes, adjust the Nucleus scheduling for time-shared processes, etc. The system tables tell Nucleus which processes are permitted to communicate with each other, and these are updated as processes are created and destroyed, e.g. when users login and logout. All I/O is performed directly from processes, and the system tables identify which processes have access to which peripherals and handle peripheral interrupts. For example, a device driver for a disk controller is a process, which is responsible for issuing commands through Nucleus to the disk controller, and handling the interrupts passed back from the disk controller via Nucleus, and the system tables will explicitly state that process has access to that disk controller. The system tables will not grant this device driver access to any other peripherals. In the event of a process stopping or crashing, Nucleus looks up its owner process in the system tables, and informs it. The owner process can then take the decision to let the system continue running without that process, or to take out the system (like a Unix panic), or to take some action such as reload and/or restart the process. Functions such as filesystems, store allocation, terminal drivers, timing services, etc. also exist as separate processes.
Nucleus implements a segmented memory system, with processes having their access to memory segments defined by the system tables, which is maintained by OS4000. OS4000 provides a memory system which handles both store-resident memory, and virtual memory backed by disk which is known as ''overlay'', with overlaying being performed at the segment level. OS4000 also inherited grouped segments from DOS, where a group of segments were to be overlaid and retrieved as a single group, but this feature was very little used in OS4000. A process may use any mixture of resident and overlayable segments, although a process performing real-time tasks would normally be designed to only use resident segments.
OS4000 supports a fully mixed set of process scheduling within the same system, from
''hard'' real-time processes, through ''soft'' real-time, time-shared, and background. Given that OS4000 also includes full program development and test/debug facilities, this made OS4000 ideal for developing and deploying real-time applications such as process control and high speed (at the time) data communications all within one system.
Filesystem
OS4000 uses its own proprietary filesystem. The filesystem is extent based, and variable block size — different files can be created with different blocksizes, ranging from 256 bytes to 16,384 bytes in 256-byte multiples.
The filesystem is hierarchical, with components limited to 8 characters and the "
.
" (period) used as the component separator. OS4000 JCL limits characters in file path components to upper case letters and numbers only. Each file path starts with a ''context pointer'' which is a name which refers to a position in a filesystem, followed by zero or more ''catalogues'' (equivalent to Unix ''directories''), and ending with a filename. Each disk on the system contains a separate and independent filesystem, and the volume name of a disk is the same as the name of its top level catalogue or ''master catalogue''. There must be one disk mounted with a volume name of
SYSTEM
which contains specific files required by OS4000. In larger systems, there will usually be additional disks containing user files, data files, etc. although these can all coexist on the
SYSTEM
disk, space permitting. Users are each given a set of ''initial context pointers'' which each point to a catalogue on a filesystem, and users can only see the filesystem hierarchies below their ''initial context pointers''. Systems are usually configured so that unprivileged users cannot see other users files or the system's files, except for the system executables held in
SYS
. By convention, an area called
POOL
is available for all users, and enables the transfer/sharing of files.
Files in an OS4000 filesystem are typed, which means that the filesystem can hold several different types of file, and understands how the contents are structured. Most common are ''logical'' files which contain a
record structure. These are split into ''sequential'' and ''random'' files, with random files having all records the same length to enable seeking to record numbers. Finally, ''text'' and ''binary'' files are distinguished, mainly to prevent applications which expect textual data from accidentally using a binary file. This results in a set of ''logical'' file types identified by three letters, e.g. Logical Sequential Text is LST. The ''logical'' file types are LST, LSB, LRT, LRB. The converse to ''logical'' files are ''physical'' files, which are accessed block at a time, and these are known as Physical Random Binary (PRB) files. File types PST, PSB, PRT also exist in theory, but have the same capabilities as PRB and are not generally used. Additionally, there is a Logical Indexed Sequential (LIS) filetype, which is an
ISAM file and always appears to be sorted on its key field, and a
Byte stream (BYT) filetype, which was added in Rel 6.5 to better support the OS4000
NFS server. A filetype CAT is used to hold ''catalogues''—it is actually the same as an LSB file, but can only be modified by the filesystem itself.
In addition to files and catalogues, there are 3 types of symbolic links. References (REF) can be created to point to another file or catalogue which creator of the REF can see through an ''initial context pointer'', in either the same filesystem or another filesystem. Off Disk Pointers (ODP) are similar to references but can be created to point to a file or catalogue which cannot be seen through any ''initial context pointers'', and creating an ODP is a privileged operation only available to the system manager. Support for Unix style symlinks (arbitrary text stored in a catalogue) was added in Rel 6.5 to better support the OS4000 NFS server, but symlinks can only be created and are only visible from NFS clients.
OS4000 also provides a non-hierarchical temporary filesystem. This supports exactly the same types of file as permanent filesystems, except for CAT, REF, ODP, and symlinks. The file contents are stored in dedicated temporary filing disk regions, but the file metadata is stored in memory. Each logged in user has a private temporary filing name space which cannot be seen by any other logged in user (nor even another logged in user with the same username). A user's temporary files are deleted when the user logs out (and implicitly if the system is rebooted). Temporary filenames start with a percent "
%
" or ampersand "
&
" and are limited to 8 characters.
Multi-access Environment
The following shows a short Multi-access login session:
In this case, user
SMAN
has logged in and issued the
EXAMINE
command. Then the session has been left to timeout through inactivity.
When a user logs in, the OS4000 JCL command interpreter
SYS.COMM
is loaded into the user's
COMM
process and started. This reads commands from the terminal. A number of ''system commands'' are built into
SYS.COMM
. In the case of a command which isn't built in, executable binary files are loaded into the
USER
process and run, and text JCL files are opened and processed directly by
SYS.COMM
itself. A user normally also gets an
AIDA
process which is privileged and used to load only trusted debugging programs.
Main Applications
Real-time Process Control
An industrial process control in continuous production processes is a discipline that uses industrial control systems to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. ...
accounts for over half of all the OS4000 systems deployed. Of these systems,
steel production accounts for a significant proportion. The earlier of these Real-time Process Control systems were upgraded from DOS to OS4000.
X.25 Packet Switches account for a significant proportion of systems (although earlier GEC X.25 Packet Switches ran a special operating system called NOS which was a cut down operating system halfway between DOS and OS4000).
Civil Command and Control systems, e.g. Fire Service control systems interfacing the emergency telephone operator with the Fire Stations.
Prestel
Prestel (abbrev. from press telephone), the brand name for the UK Post Office Telecommunications's Viewdata technology, was an interactive videotex system developed during the late 1970s and commercially launched in 1979. It achieved a maxim ...
(UK) and the public
Videotex
Videotex (or interactive videotex) was one of the earliest implementations of an end-user information system. From the late 1970s to early 2010s, it was used to deliver information (usually pages of text) to a user in computer-like format, typi ...
systems used in many other countries, and many private
Viewdata systems.
Multi-User Minicomputers, used in many Education and Research establishments.
Ports
OS4000 was ported to the
GEC Series 63
The GEC Series 63 was a 32-bit minicomputer produced by GEC Computers Limited of the UK during the 1980s in conjunction with A.B. Dick in USA. During development, the computer was known as the R Project. The hardware development (under Dick ...
minicomputer where it was known as OS6000.
This required the addition of a software Nucleus emulation, as this was not a feature of the GEC Series 63 hardware. GEC Computers dropped OS6000, and the source code was given to
Daresbury Laboratory
Daresbury Laboratory is a scientific research laboratory based at Sci-Tech Daresbury campus near Daresbury in Halton, Cheshire, England. The laboratory began operations in 1962 and was officially opened on 16 June 1967 as the Daresbury Nuclear P ...
who was the main user of it, and they continued to keep it in step with OS4000 releases for the lifetime of their two GEC Series 63 systems.
See also
*
GEC 4000 series minicomputers
*
Babbage (programming language)
Babbage is the high level assembly language for the GEC 4000 series minicomputers. It was named after Charles Babbage, an English computing pioneer.
Example
PROCESS CHAPTER FACTORIAL
ENTRY LABEL ENTRYPOINT
LITERAL TO = 4 ...
*
GEC Computers Limited
References
Further reading
*
*
External links
GEC 4000 family, ''Which Computer?'', May 1979The Centre for Computing History
{{DEFAULTSORT:Os4000
Proprietary operating systems
Real-time operating systems
Time-sharing operating systems
GEC Computers
1977 software