The
rms charge radius is a measure of the size of an
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden experiments, Geiger–Marsden gold foil experiment. After th ...
, particularly the
proton distribution. It can be measured by the scattering of
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary partic ...
s by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with
atomic spectroscopy
Atomic spectroscopy is the study of the electromagnetic radiation absorbed and emitted by atoms. Since unique elements have characteristic (signature) spectra, atomic spectroscopy, specifically the electromagnetic spectrum or mass spectrum, is app ...
.
Definition
The problem of defining a radius for the atomic nucleus has some similarity to that of defining a
radius for the entire atom; neither have well defined boundaries. However, basic
liquid drop models of the nucleus imagine a fairly uniform density of nucleons, theoretically giving a more recognizable surface to a nucleus than an atom, the latter being composed of highly diffuse electron clouds with density gradually reducing away from the centre. For individual protons and neutrons or small nuclei, the concepts of size and boundary can be less clear. A single nucleon needs to be regarded as a "
color confined" bag of three
valence quarks, binding
gluons
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind qua ...
and so called "sea" of quark-antiquark pairs. Additionally, the nucleon is surrounded by its
Yukawa pion field responsible for the
strong nuclear force
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called t ...
. It could be difficult to decide whether to include the surrounding Yukawa meson field as part of the proton or nucleon size or to regard it as a separate entity.
Fundamentally important are realizable experimental procedures to measure some aspect of size, whatever that may mean in the quantum realm of atoms and nuclei. Foremost, the nucleus can be
model
A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure.
Models c ...
ed as a sphere of positive charge for the interpretation of
electron scattering
Electron scattering occurs when electrons are deviated from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz fo ...
experiments: the electrons "see" a range of cross-sections, for which a mean can be taken. The qualification of "rms" (for "
root mean square
In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of th ...
") arises because it is the nuclear
cross-section
Cross section may refer to:
* Cross section (geometry)
** Cross-sectional views in architecture & engineering 3D
*Cross section (geology)
* Cross section (electronics)
* Radar cross section, measure of detectability
* Cross section (physics)
**Abs ...
, proportional to the square of the radius, which is determining for electron scattering.
This definition of charge radius is often applied to composite
hadron
In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s such as a
proton,
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
,
pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
, or
kaon
KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe.
Its first incarnation was developed in 2002 and supported an enhanced version o ...
, that are made up of more than one
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
. In the case of an anti-matter baryon (e.g. an anti-proton), and some particles with a net zero
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respecti ...
, the composite particle must be modeled as a sphere of negative rather than positive electric charge for the interpretation of electron scattering experiments. In these cases, the square of the charge radius of the particle is defined to be negative, with the same absolute value with units of length squared equal to the positive squared charge radius that it would have had if it was identical in all other respects but each quark in the particle had the opposite electric charge (with the charge radius itself having a value that is an imaginary number with units of length). It is customary when charge radius takes an imaginary numbered value to report the negative valued square of the charge radius, rather than the charge radius itself, for a particle.
The best known particle with a negative squared charge radius is the
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
. The heuristic explanation for why the squared charge radius of a neutron is negative, despite its overall neutral electric charge, is that this is the case because its negatively charged down quarks are, on average, located in the outer part of the neutron, while its positively charged up quark is, on average, located towards the center of the neutron. This asymmetric distribution of charge within the particle gives rise to a small negative squared charge radius for the particle as a whole. But, this is only the simplest of a variety of theoretical models, some of which are more elaborate, that are used to explain this property of a neutron.
For
deuteron
Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
s and higher nuclei, it is conventional to distinguish between the scattering charge radius, ''r''
d (obtained from scattering data), and the bound-state charge radius, ''R''
d, which includes the Darwin–Foldy term to account for the behaviour of the
anomalous magnetic moment
In quantum electrodynamics, the anomalous magnetic moment of a particle is a contribution of effects of quantum mechanics, expressed by Feynman diagrams with loops, to the magnetic moment of that particle. (The ''magnetic moment'', also called '' ...
in an electromagnetic field and which is appropriate for treating spectroscopic data.
The two radii are related by
:
where ''m''
e and ''m''
d are the masses of the electron and the deuteron respectively while ''λ''
C is the
Compton wavelength
The Compton wavelength is a quantum mechanical property of a particle. The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It wa ...
of the electron.
For the proton, the two radii are the same.
History
The first estimate of a nuclear charge radius was made by
Hans Geiger
Johannes Wilhelm "Hans" Geiger (; ; 30 September 1882 – 24 September 1945) was a German physicist. He is best known as the co-inventor of the detector component of the Geiger counter and for the Geiger–Marsden experiment which discover ...
and
Ernest Marsden
Sir Ernest Marsden (19 February 1889 – 15 December 1970) was an English-New Zealand physicist. He is recognised internationally for his contributions to science while working under Ernest Rutherford, which led to the discovery of new theorie ...
in 1909, under the direction of
Ernest Rutherford
Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics.
''Encyclopædia Britannica'' considers him to be the greatest ...
at the Physical Laboratories of the
University of Manchester
The University of Manchester is a public university, public research university in Manchester, England. The main campus is south of Manchester city centre, Manchester City Centre on Wilmslow Road, Oxford Road. The university owns and operates majo ...
, UK. The famous experiment involved the scattering of
α-particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produc ...
s by
gold
Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
foil, with some of the particles being scattered through angles of more than 90°, that is coming back to the same side of the foil as the α-source. Rutherford was able to put an upper limit on the radius of the gold nucleus of 34
femtometres
The helium atom and perspective magnitudes
The femtometre (American spelling femtometer) symbol fm derived from the Danish language">Danish and Norwegian word 'fifteen', grc">μέτρον, metrοn, lit=unit of measurement) is a unit of le ...
.
Later studies found an empirical relation between the charge radius and the
mass number
The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
, ''A'', for heavier nuclei (''A'' > 20):
:''R'' ≈ ''r''
0''A''
where the empirical constant ''r''
0 of 1.2–1.5 fm can be interpreted as the
Compton wavelength
The Compton wavelength is a quantum mechanical property of a particle. The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It wa ...
of the proton. This gives a charge radius for the gold nucleus (''A'' = 197) of about 7.69 fm.
Modern measurements
Modern direct measurements are based on precision measurements of the atomic
energy level
A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The ...
s in hydrogen and deuterium, and measurements of
scattering of electrons by nuclei.
[.] There is most interest in knowing the charge radii of
protons and
deuteron
Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
s, as these can be compared with the spectrum of atomic
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
/
deuterium
Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
: the nonzero size of the nucleus causes a shift in the electronic energy levels which shows up as a change in the frequency of the
spectral line
A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s.
Such comparisons are a
test
Test(s), testing, or TEST may refer to:
* Test (assessment), an educational assessment intended to measure the respondents' knowledge or other abilities
Arts and entertainment
* ''Test'' (2013 film), an American film
* ''Test'' (2014 film), ...
of
quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
(QED). Since 2002, the proton and deuteron charge radii have been independently refined parameters in the
CODATA
The Committee on Data of the International Science Council (CODATA) was established in 1966 as the Committee on Data for Science and Technology, originally part of the International Council of Scientific Unions, now part of the International ...
set of recommended values for physical constants, that is both scattering data and spectroscopic data are used to determine the recommended values.
The 2014 CODATA recommended values are:
:proton: ''R''
p = 0.8751(61)×10
−15 m
:deuteron: ''R''
d = 2.1413(25)×10
−15 m
Recent measurement of the
Lamb shift
In physics, the Lamb shift, named after Willis Lamb, is a difference in energy between two energy levels 2''S''1/2 and 2''P''1/2 (in term symbol notation) of the hydrogen atom which was not predicted by the Dirac equation, according to which ...
in
muonic hydrogen
An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) ...
(an
exotic atom
An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms ...
consisting of a proton and a negative muon) indicates a significantly lower value for the proton charge radius, : the reason for this discrepancy is not clear.
References
{{Authority control
Physical constants
Nuclear chemistry
Nuclear physics
hu:Atommag#Atommagok tulajdonságai