Nuclear criticality safety is a field of
nuclear engineering
Nuclear engineering is the engineering discipline concerned with designing and applying systems that utilize the energy released by nuclear processes.
The most prominent application of nuclear engineering is the generation of electricity. Worldwide ...
dedicated to the prevention of
nuclear and radiation accidents
A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include radiation poisoning, lethal effect ...
resulting from an inadvertent, self-sustaining
nuclear chain reaction
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of thes ...
.
Nuclear
criticality safety is concerned with mitigating the consequences of a nuclear
criticality accident
A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, divergent chain reaction, or simply critical. Any such event involves the uninten ...
.
A nuclear criticality accident occurs from operations that involve
fissile
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
material and results in a sudden and potentially lethal release of
radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:
* ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
.
Nuclear criticality safety practitioners attempt to prevent nuclear criticality accidents by analyzing normal and credible abnormal conditions in
fissile material
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy i ...
operations and designing safe arrangements for the processing of fissile materials.
A common practice is to apply a double contingency analysis to the operation in which two or more independent, concurrent and unlikely changes in process conditions must occur before a nuclear criticality accident can occur. For example, the first change in conditions may be complete or partial flooding and the second change a re-arrangement of the fissile material.
Controls (requirements) on process parameters (e.g., fissile material mass, equipment) result from this analysis. These controls, either passive (physical), active (mechanical), or administrative (human), are implemented by inherently safe or
fault-tolerant plant designs, or, if such designs are not practicable, by
administrative controls
Administrative controls are training, procedure, policy, or shift designs that lessen the threat of a hazard to an individual. Administrative controls typically change the behavior of people (e.g., factory workers) rather than removing the act ...
such as operating procedures, job instructions and other means to minimize the potential for significant process changes that could lead to a nuclear criticality accident.
Principles

As a simplistic analysis, a system will be exactly critical if the rate of neutron production from fission is exactly balanced by the rate at which neutrons are either absorbed or lost from the system due to leakage. Safely subcritical systems can be designed by ensuring that the potential combined rate of absorption and leakage always exceeds the potential rate of neutron production.
The parameters affecting the criticality of the system may be remembered using the mnemonic ''MAGICMERV''. Some these parameters are not independent from one another; for example, changing mass will result in a change of volume, among others.
Mass: The probability of fission increases as the total number of fissile nuclei increases. The relationship is not linear. If a fissile body has a given size and shape but varying density and mass, there is a threshold below which criticality cannot occur. This threshold is called the
critical mass
In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
.
Absorption: Absorption removes neutrons from the system. Large amounts of absorbers are used to control or reduce the probability of a criticality. Good absorbers are
boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
,
cadmium
Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
,
gadolinium
Gadolinium is a chemical element; it has Symbol (chemistry), symbol Gd and atomic number 64. It is a silvery-white metal when oxidation is removed. Gadolinium is a malleable and ductile rare-earth element. It reacts with atmospheric oxygen or moi ...
,
silver
Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
, and
indium
Indium is a chemical element; it has Symbol (chemistry), symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are la ...
.
Geometry/shape: The shape of the fissile system affects how easily neutrons can escape (leak out) from it, in which case they are not available to cause
fission events in the fissile material. Therefore, the shape of the fissile material affects the probability of occurrence of fission events. A shape with a large surface area, such as a thin slab, favors leakage and is safer than the same amount of fissile material in a small, compact shape such as a cube or sphere.
Interaction of units:
Neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s leaking from one unit can enter another. Two units, which by themselves are sub-critical, could interact with each other to form a critical system. The distance separating the units and any material between them influences the effect.
Concentration/Density: Neutron reactions leading to scattering, capture or fission reactions are more likely to occur in dense materials; conversely, neutrons are more likely to escape (leak) from low density materials.
Moderation: Neutrons resulting from fission are typically fast (high energy). These fast neutrons do not cause fission as readily as slower (less energetic) ones. Neutrons are slowed down (
moderated) by collision with atomic nuclei. The most effective moderating nuclei are hydrogen,
deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
, beryllium and carbon. Hence hydrogenous materials including oil, polyethylene, water, wood, paraffin, and the human body are good moderators. Note that moderation comes from collisions; therefore most moderators are also good reflectors.
Enrichment: The probability of a neutron reacting with a fissile nucleus is influenced by the relative numbers of fissile and non-fissile nuclei in a system. The process of increasing the relative number of fissile nuclei in a system is called
enrichment. Typically, low enrichment means less likelihood of a criticality and high enrichment means a greater likelihood.
Reflection: When neutrons collide with other atomic particles (primarily nuclei) and are not absorbed, they are scattered (i.e. they change direction). If the change in direction is large enough, neutrons that have just escaped from a fissile body may be deflected back into it, increasing the likelihood of fission. This is called 'reflection'. Good reflectors include hydrogen,
beryllium
Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
, carbon, lead, uranium, water, polyethylene, concrete,
Tungsten carbide
Tungsten carbide (chemical formula: ) is a carbide containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in in ...
and steel.
Volume: For a body of fissile material in any given shape, increasing the size of the body increases the average distance that neutrons must travel before they can reach the surface and escape. Hence, increasing the size of the body increases the likelihood of fission and decreases the likelihood of leakage. Hence, for any given shape (and reflection conditions - see below) there will be a size that gives an exact balance between the rate of neutron production and the combined rate of absorption and leakage. This is the critical size.
Other parameters include:
Temperature: This particular parameter is less commonly considered by criticality safety practitioners, as variations in temperature in a typical operating environment are often minimal or unlikely to adversely affect the criticality of the system. Often, it is assumed the actual temperature of the system being analyzed is close to room temperature. Notable exceptions to this assumption include high-temperature reactors and low-temperature cryogenic experiments.
Heterogeneity: Blending fissile powders into solution, milling of powders or scraps, or other processes that affect the small-scale structure of fissile materials is important. While normally referred to as heterogeneity control, generally the concern is maintaining homogeneity because the homogeneous case is usually less reactive. Particularly, at lower enrichment, a system may be more reactive in a heterogeneous configuration compared to a homogeneous configuration.
Physicochemical Form: Consists of controlling the physical state (i.e., solid, liquid, or gas) and form (e.g., solution, powder, green or sintered pellets, or metal) and/or chemical composition (e.g., uranium hexafluoride, uranyl fluoride, plutonium nitrate, or mixed oxide) of a particular fissile material. The physicochemical form could indirectly affect other parameters, such as density, moderation, and neutron absorption.
Calculations and analyses
To determine if any given system containing
fissile
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
material is safe, its neutron balance must be calculated. In all but very simple cases, this usually requires the use of computer programs to model the system geometry and its material properties.
The analyst describes the geometry of the system and the materials, usually with conservative or pessimistic assumptions. The density and size of any neutron absorbers is minimised while the amount of fissile material is maximised. As some moderators are also absorbers, the analyst must be careful when modelling these to be pessimistic. Computer codes allow analysts to describe a three-dimensional system with boundary conditions. These boundary conditions can represent real boundaries such as concrete walls or the surface of a pond, or can be used to represent an artificial infinite system using a periodic boundary condition. These are useful when representing a large system consisting of many repeated units.
Computer codes used for criticality safety analyses include OPENMC (MIT), COG (US), MONK (UK), SCALE/KENO (US),
MCNP (US), and CRISTAL (France).
CRISTAL (France)
Burnup credit
Traditional criticality analyses assume that the fissile
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
material is in its most reactive condition, which is usually at maximum enrichment, with no irradiation. For spent nuclear fuel
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
storage and transport, burnup credit may be used to allow fuel to be more closely packed, reducing space and allowing more fuel to be handled safely. In order to implement burnup credit, fuel is modeled as irradiated using pessimistic conditions which produce an isotopic composition representative of all irradiated fuel. Fuel irradiation produces actinides
The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
consisting of both neutron absorbers and fissionable
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in ...
isotopes as well as fission products
Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
which absorb neutrons.
In fuel storage pools using burnup
In nuclear power technology, burnup is a measure of how much energy is extracted from a given amount of nuclear fuel. It may be measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial heavy metal atom) or %FIF ...
credit, separate regions are designed for storage of fresh and irradiated fuel. In order to store fuel in the irradiated fuel store it must satisfy a loading curve which is dependent on initial enrichment and irradiation.
See also
*Critical mass
In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
*Criticality accident
A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, divergent chain reaction, or simply critical. Any such event involves the uninten ...
*Nuclear and radiation accidents and incidents
A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, la ...
* World Association of Nuclear Operators
References
{{DEFAULTSORT:Nuclear Criticality Safety
Nuclear safety and security
Nuclear technology